2019版高考文科数学大一轮复习人教A版文档:第十一章 概率11.1 .docx
《2019版高考文科数学大一轮复习人教A版文档:第十一章 概率11.1 .docx》由会员分享,可在线阅读,更多相关《2019版高考文科数学大一轮复习人教A版文档:第十一章 概率11.1 .docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.1随机事件的概率最新考纲考情考向分析1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别2.了解两个互斥事件的概率加法公式.以考查随机事件、互斥事件与对立事件的概率为主,常与事件的频率交汇考查本节内容在高考中三种题型都有可能出现,随机事件的频率与概率的题目往往以解答题的形式出现,互斥事件、对立事件的概念及概率常常以选择、填空题的形式出现.1概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,在相同条件下,随着试验次数的增
2、加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率,记作P(A)2事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA且ABAB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件(AB),则称事件A与事件
3、B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件AB,P(A)P(B)13.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B)(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)1P(B)知识拓展互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥
4、事件未必是对立事件题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)事件发生的频率与概率是相同的()(2)随机事件和随机试验是一回事()(3)在大量重复试验中,概率是频率的稳定值()(4)两个事件的和事件是指两个事件都得发生()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件()(6)两互斥事件的概率和为1.()题组二教材改编2P121T5一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()A至多有一次中靶 B两次都中靶C只有一次中靶 D两次都不中靶答案D解析“至少有一次中靶”的对立事件是“两次都不中靶”3P82B组T1有一个容量为66的样本,数据的分组及各
5、组的频数如下:11.5,15.5),2;15.5,19.5),4;19.5,23.5),9;23.5,27.5),18;27.5,31.5),11;31.5,35.5),12;35.5,39.5),7;39.5,43.5,3.根据样本的频率分布估计,数据落在27.5,43.5内的概率约是_答案解析由条件可知,落在27.5,43.5内的数据有11127333(个),故所求概率约是.题组三易错自纠4将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A必然事件 B随机事件C不可能事件 D无法确定答案B解析抛掷10次硬币正面向上的次数可能为010,都有可能发生,正面向上5次是随机事件5从1,2,
6、3,4,5中随机选取一个数a,从1,2,3中随机选取一个数b,则ba的概率是()A. B. C. D.答案D解析基本事件的个数为5315,其中满足ba的有3种,所以ba的概率为.6(2018济南模拟)从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为_答案0.35解析事件A抽到一等品,且P(A)0.65,事件“抽到的产品不是一等品”的概率为P1P(A)10.650.35.题型一事件关系的判断1从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:至少有1个白
7、球与至少有1个黄球;至少有1个黄球与都是黄球;恰有1个白球与恰有1个黄球;恰有1个白球与都是黄球其中互斥而不对立的事件共有()A0组 B1组 C2组 D3组答案B解析中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,故两个事件不是互斥事件;中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,故两个事件不互斥;中“恰有1个白球”与“恰有1个黄球”都是指有1个白球和1个黄球,故两个事件是同一事件;中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.2在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”
8、的概率是,那么概率是的事件是()A至多有一张移动卡 B恰有一张移动卡C都不是移动卡 D至少有一张移动卡答案A解析至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件3口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A“取出的两个球同色”,B“取出的两个球中至少有一个黄球”,C“取出的两个球中至少有一个白球”,D“取出的两个球不同色”,E“取出的两个球中至多有一个白球”下列判断中正确的序号为_A与D为对立事件;B与C是互斥事件;C与E是对立事件;P(CE)1;P(B)P(C)答案解析当取出的两个球中一黄一白时,B与C都发
9、生,不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,不正确;显然A与D是对立事件,正确;CE不一定为必然事件,P(CE)1,不正确;P(B),P(C),不正确思维升华 (1)准确把握互斥事件与对立事件的概念互斥事件是不可能同时发生的事件,但可以同时不发生对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件题型二随机事件的频率与概率典例 (2017全国)某超市计划按月订购一种酸奶,每天
10、进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销
11、售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率解(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y64504450900;若最高气温位于区间20,25),则Y63002(450300)4450300;若最高气温低于20,则Y62002(450200)4450100,所以,Y的所有可能值为900,300,100.Y大于零当且仅当最高气温
12、不低于20,由表格数据知,最高气温不低于20的频率为0.8.因此Y大于零的概率的估计值为0.8.思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率跟踪训练 (2016全国)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1
13、.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度的平均保费的估计值解(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为0
14、.3,故P(B)的估计值为0.3.(3)由所给数据,得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.051.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.题型三互斥、对立事件的概率命题点1互斥事件的概率典例 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率解
15、记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥(1)记“至多2人排队等候”为事件G,则GABC,所以P(G)P(ABC)P(A)P(B)P(C)0.10.160.30.56.(2)记“至少3人排队等候”为事件H,则HDEF,所以P(H)P(DEF)P(D)P(E)P(F)0.30.10.040.44.命题点2对立事件的概率典例 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球从中随机取出1球,求:(1)取出1球是红球或黑球的
16、概率;(2)取出1球是红球或黑球或白球的概率解方法一(利用互斥事件求概率)记事件A1任取1球为红球,A2任取1球为黑球,A3任取1球为白球,A4任取1球为绿球,则P(A1),P(A2),P(A3),P(A4).根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为P(A1A2)P(A1)P(A2).(2)取出1球是红球或黑球或白球的概率为P(A1A2A3)P(A1)P(A2)P(A3).方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1A2的对立事件为A3A4,所以取出1球为红球或黑球的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版高考文科数学大一轮复习人教A版文档:第十一章 概率11.1 2019 高考 文科 数学 一轮 复习 文档 第十一 概率 11.1
限制150内