2018版高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算导学案新人教A版必修4_.doc
《2018版高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算导学案新人教A版必修4_.doc》由会员分享,可在线阅读,更多相关《2018版高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算导学案新人教A版必修4_.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一平面向量的正交分解思考如果向量a与b的夹角是90,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?答案互相垂直的两个向量能作为平面内所有向量的一组基底.梳理把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.知识点二平面向量的坐标表示思考1如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30,且|a|4,以向
2、量i,j为基底,如何表示向量a?答案a2i2j.思考2在平面直角坐标系内,给定点A的坐标为A(1,1),则A点位置确定了吗?给定向量a的坐标为a(1,1),则向量a的位置确定了吗?答案对于A点,若给定坐标为A(1,1),则A点位置确定.对于向量a,给定a的坐标为a(1,1),此时给出了a的方向和大小,但因向量的位置由起点和终点确定,且向量可以任意平移,因此a的位置还与其起点有关.思考3设向量(1,1),O为坐标原点,若将向量平移到,则的坐标是多少?A点坐标是多少?答案向量的坐标为(1,1),A点坐标为A(1,1).梳理(1)平面向量的坐标在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位
3、向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得axiyj.平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a(x,y).在平面直角坐标平面中,i(1,0),j(0,1),0(0,0).(2)点的坐标与向量坐标的区别和联系区别表示形式不同向量a(x,y)中间用等号连接,而点A(x,y)中间没有等号意义不同点A(x,y)的坐标(x,y)表示点A在平面直角坐标系中的位置,a(x,y)的坐标(x,y)既表示向量的大小,也表示向量的方向.另外(x,y)既可以表示点,也可以表示向量,叙述时应指明点(x,y)或向量(x,
4、y)联系当平面向量的始点在原点时,平面向量的坐标与向量终点的坐标相同知识点三平面向量的坐标运算思考设i、j是分别与x轴、y轴同向的两个单位向量,若设a(x1,y1),b(x2,y2),则ax1iy1j,bx2iy2j,根据向量的线性运算性质,向量ab,ab,a(R)如何分别用基底i、j表示?答案ab(x1x2)i(y1y2)j,ab(x1x2)i(y1y2)j,ax1iy1j.梳理设a(x1,y1),b(x2,y2),数学公式文字语言表述向量加法ab(x1x2,y1y2)两个向量和的坐标分别等于这两个向量相应坐标的和向量减法ab(x1x2,y1y2)两个向量差的坐标分别等于这两个向量相应坐标的
5、差向量数乘a(x1,y1)实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标已知点A(x1,y1),B(x2,y2),那么向量(x2x1,y2y1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.类型一平面向量的坐标表示例1如图,在平面直角坐标系xOy中,OA4,AB3,AOx45,OAB105,a,b. 四边形OABC为平行四边形. (1)求向量a,b的坐标;(2)求向量的坐标;(3)求点B的坐标.解(1)作AMx轴于点M,则OMOAcos 4542,AMOAsin 4542.A(2,2),故a(2,2).AOC18010575,AOy45,COy30.又OCA
6、B3,C,即b.(2).(3)(2,2)(,).反思与感悟在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标定义求坐标.一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围.跟踪训练1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,点C在第一象限,D为AC的中点,分别求向量,的坐标.解如图,正三角形ABC的边长为2,则顶点A(0,0),B(2,0),C(2cos 60,2sin 60),C(1,),D(,),(2,0),(1,),(12,0)(1,),(2,0)(,).类型二平面向量的坐标
7、运算例2已知A(2,4),B(3,1),C(3,4).设a,b,c,且3c,2b.(1)求3ab3c;(2)求满足ambnc的实数m,n的值;(3)求M,N的坐标及向量的坐标.解由已知得a(5,5),b(6,3),c(1,8).(1)3ab3c3(5,5)(6,3)3(1,8)(1563,15324)(6,42).(2)mbnc(6mn,3m8n)a(5,5),解得(3)设O为坐标原点,3c,3c(3,24)(3,4)(0,20),M(0,20).又2b,2b(12,6)(3,4)(9,2),N(9,2),(9,18).反思与感悟向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、
8、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.跟踪训练2已知a(1,2),b(2,1),求:(1)2a3b;(2)a3b;(3)ab.解(1)2a3b2(1,2)3(2,1)(2,4)(6,3)(4,7).(2)a3b(1,2)3(2,1)(1,2)(6,3)(7,1).(3)ab(1,2)(2,1).类型三平面向量坐标运算的应用例3已知点A(2,3),B(5,4),C(7,10).若(R),试求为何值时:(1)点P在第一、三象限的角平分线上;(2)点P在第三象限内.解设点P的坐标为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高中数学 第二 平面 向量 2.3 正交 分解 坐标 表示 运算 导学案 新人 必修
链接地址:https://www.taowenge.com/p-2614457.html
限制150内