概率论与数理统计学习知识资料点情况总结分析.doc

收藏

编号:2614620    类型:共享资源    大小:541.02KB    格式:DOC    上传时间:2020-04-24
8
金币
关 键 词:
概率论 数理统计 学习 知识 资料 情况 总结 分析
资源描述:
第1章 随机事件及其概率 (1)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (2)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。 为必然事件,为不可能事件。 不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (3)事件的关系与运算 ①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生): 如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:AB,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。 A、B同时发生:AB,或者AB。AB=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 -A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) 德摩根率: , (4)概率的公理化定义 设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件: 1 0≤P(A)≤1, 2 P(Ω) =1 3 对于两两互不相容的事件,,…有 则称P(A)为事件的概率。 (5)古典概型 1 , 2 。 设任一事件,它是由组成的,则有 P(A)= = (6)几何概型 若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A, 。其中L为几何度量(长度、面积、体积)。 (7)加法公式 P(A+B)=P(A)+P(B)-P(AB) 当AB不相容P(AB)=0时,P(A+B)=P(A)+P(B) 当AB独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B) (8)减法公式 P(A-B)=P(A)-P(AB) 当BA时,P(A-B)=P(A)-P(B) 当A=Ω时,P()=1- P(B) (9)条件概率 定义 设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。 条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如P(Ω/B)=1P(/A)=1-P(B/A) (10)乘法公式 乘法公式: 更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有 …………。 (11)独立性 ①两个事件的独立性 设事件、满足,则称事件、是相互独立的。 若事件、相互独立,且,则有 若事件、相互独立,则可得到与、与、与也都相互独立。 必然事件和不可能事件与任何事件都相互独立。 与任何事件都互斥。 ②多个事件的独立性 设ABC是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A、B、C相互独立。 对于n个事件类似。 (12)全概公式 设事件满足 1两两互不相容,, 2, 则有 。 全概率公式解决的是多个原因造成的结果问题,全概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式; (13)贝叶斯公式 设事件,,…,及满足 1 ,,…,两两互不相容,>0,1,2,…,, 2 ,, 则 ,i=1,2,…n。 此公式即为贝叶斯公式。 ,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。将试验可看成分为两步做,如果求在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式。 (14)伯努利概型 我们作了次试验,且满足 u 每次试验只有两种可能结果,发生或不发生; u 次试验是重复进行的,即发生的概率每次均一样; u 每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。 这种试验称为伯努利概型,或称为重伯努利试验。 用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率, ,。 第二章 随机变量及其分布 (1)离散型随机变量的分布律 设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出: 。 显然分布律应满足下列条件: (1),, (2)。 (2)连续型随机变量的分布密度 设是随机变量的分布函数,若存在非负函数,对任意实数,有 , 则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。 密度函数具有下面4个性质: 1、 。 2、 。 3、 4、P(x=a)=0,a为常数,连续型随机变量取个别值的概率为0 (3)分布函数 设为随机变量,是任意实数,则函数 称为随机变量X的分布函数,本质上是一个累积函数。 可以得到X落入区间的概率。分布函数表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1 ; 2 是单调不减的函数,即时,有 ; 3 , ; 4 ,即是右连续的; 5 。 对于离散型随机变量,; 对于连续型随机变量, 。 (4)六大分布 0-1分布 P(X=1)=p, P(X=0)=q 二项分布 在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。 , 其中, 则称随机变量服从参数为,的二项分布。记为。 当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。 泊松分布 设随机变量的分布律为 ,,, 则称随机变量服从参数为的泊松分布,记为或者P()。 泊松分布为二项分布的极限分布(np=λ,n→∞)。 均匀分布 设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即 a≤x≤b 其他, 则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。 分布函数为 a≤x≤b 0, xb。 当a≤x1x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1); (3)F(x,y)分别对x和y是右连续的,即 (4) (5)对于 P(x10, D(Y)>0,则称 为X与Y的相关系数,记作(有时可简记为)。 ||≤1,当||=1时,称X与Y完全相关: 完全相关 而当时,称X与Y不相关。 以下五个命题是等价的: ①; ②cov(X,Y)=0; ③E(XY)=E(X)E(Y); ④D(X+Y)=D(X)+D(Y); ⑤D(X-Y)=D(X)+D(Y). (6)协方差性质 (i) cov (X, Y)=cov (Y, X); (ii) cov(aX,bY)=ab cov(X,Y); (iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y); (iv) cov(X,Y)=E(XY)-E(X)E(Y). (7)独立和不相关 (i) 若随机变量X与Y相互独立,则;反之不真。 (ii) 若(X,Y)~N(), 则X与Y相互独立的充要条件是X和Y不相关。
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:概率论与数理统计学习知识资料点情况总结分析.doc
链接地址:https://www.taowenge.com/p-2614620.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开