2019版高考数学(文)培优增分一轮全国经典版培优讲义:第7章 立体几何 第3讲 空间点、直线、平面之间的位置关系 .docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2019版高考数学(文)培优增分一轮全国经典版培优讲义:第7章 立体几何 第3讲 空间点、直线、平面之间的位置关系 .docx》由会员分享,可在线阅读,更多相关《2019版高考数学(文)培优增分一轮全国经典版培优讲义:第7章 立体几何 第3讲 空间点、直线、平面之间的位置关系 .docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲空间点、直线、平面之间的位置关系板块一知识梳理自主学习必备知识考点1平面的基本性质考点2空间两条直线的位置关系1位置关系的分类异面直线:不同在任何一个平面内,没有公共点2平行公理平行于同一条直线的两条直线互相平行3等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4异面直线所成的角(1)定义:设a,b是两条异面直线,经过空间中任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(2)范围:.考点3空间直线、平面的位置关系 必会结论1公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推
2、论3:经过两条平行直线有且只有一个平面2异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线考点自测 1判断下列结论的正误(正确的打“”,错误的打“”)(1)两个不重合的平面只能把空间分成四个部分()(2)两个平面ABC与DBC相交于线段BC.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平行直线()(4)没有公共点的两条直线是异面直线()答案(1)(2)(3)(4)22018福州质检已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p是q的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件答案A解析若
3、直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件故选A.3课本改编若直线ab,且直线a平面,则直线b与平面的位置关系是()AbBbCb或bDb与相交或b或b答案D解析b与相交或b或b都可以故选D.42018衡中调研已知直线a,b,c,有下面四个命题:若a,b异面,b,c异面,则a,c异面;若a,b相交,b,c相交,则a,c相交;若ab,则a,b与c所成的角相等;若ab,bc,则ac.其中真命题的序号是_答案解析a,c可能相交、平行或异面;a,c可能相交、平行或异面;正确;a,c可能相交、平行或异面5.2018大连模拟如图,在三棱锥CABD 中,E,F分别是AC和BD的中点,若C
4、D2AB4,EFAB,则EF与CD所成的角是_答案30解析取CB的中点G,连接EG,FG,EGAB,FGCD,EF与CD所成的角为EFG或其补角又EFAB,EFEG.在RtEFG,EGAB1,FGCD2,sinEFG,EFG30,EF与CD所成的角为30.板块二典例探究考向突破考向平面基本性质的应用 例1如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点证明(1)如图所示,连接EF,CD1,A1B.E,F分别是AB,AA1的中点,EFBA1.又A1BD1C,EFCD1.E,C,D1,F四点共面(2)
5、EFCD1,EFCD1,CE与D1F必相交,设交点为P.则由PCE,CE平面ABCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1DA,P直线DA,CE,D1F,DA三线共点触类旁通1证明三点共线的两种方法(1)首先找出两个平面,然后证明这三点都是这两个平面的公共点,则这三点都在交线上,即三点共线(2)选择其中两点确定一条直线,然后证明另一点也在这条直线上,从而得三点共线2证明三线共点的思路先证两条直线交于一点,再证明第三条直线经过这点,把问题化归为证明点在直线上的问题通常是先证两条直线的交点在两个平面的交线上,而第三条直线恰好是两个平面的交线【变式训练1】如图,空
6、间四边形ABCD中,E,F分别是AB、AD的中点,G,H分别在BC,CD上,且BGGCDHHC12.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P.求证:P,A,C三点共线证明(1)E,F分别为AB,AD的中点,EFBD.在BCD中,GHBD,EFGH,E,F,G,H四点共面(2)由(1)知EF綊BD,GH綊BD.四边形FEGH为梯形,GE与HF交于一点,设EGFHP,PEG,EG平面ABC,P平面ABC.同理P平面ADC.P为平面ABC与平面ADC的公共点,又平面ABC平面ADCAC,PAC,P,A,C三点共线考向空间两条直线的位置关系 命题角度1两直线位置关系的判定例220
7、15广东高考若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交答案D解析由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交故选D.命题角度2异面直线的判定例3如图所示,正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为_(注:把你认为正确的结论序号
8、都填上)答案解析因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故错;取DD1中点E,连接AE,则BNAE,但AE与AM相交,故错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故正确;同理正确,故填.触类旁通空间两条直线位置关系的判定方法考向异面直线所成的角 例42017全国卷已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()A. B. C. D.答案C解析将直三棱柱ABCA1B1C1补
9、形为直四棱柱ABCDA1B1C1D1,如图所示,连接AD1,B1D1,BD.由题意知ABC120,AB2,BCCC11,所以AD1BC1,AB1,DAB60.在ABD中,由余弦定理知BD22212221cos603,所以BD,所以B1D1.又AB1与AD1所成的角即为AB1与BC1所成的角 ,所以cos.故选C.触类旁通用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角【变式训练2】如图,在三棱锥
10、ABCD中,ABACBDCD3,ADBC2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是_答案解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.M为AD的中点,MKAN,KMC(或其补角)为异面直线AN,CM所成的角ABACBDCD3,ADBC2,N为BC的中点,由勾股定理易求得ANDNCM2,MK.在RtCKN中,CK.在CKM中,由余弦定理,得cosKMC,所以异面直线AN,CM所成的角的余弦值是.核心规律1.三个公理的作用是证明点共线、点共面、线共面、线共点等几何问题2.求异面直线所成的角就是要通过平移转化的方法,将异面直线所成的角转化成同一平面内的直
11、线所成的角,放到同一个可解的三角形中去求解满分策略1.正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”2.不共线的三点确定一个平面,一定不能丢掉“不共线”条件3.两条异面直线所成角的范围是(0,90.板块三启智培优破译高考题型技法系列 11构造法判定空间线面位置关系 2018西安模拟已知m,n是两条不同的直线,为两个不同的平面,有下列四个命题:若m,n,mn,则;若m,n,mn,则;若m,n,mn,则;若m,n,则mn.其中所有真命题的序号是()A B C D解题视点判断空间线面的位置关系,常利用正(长)方体及其他几何体模型来判断,把平面、直线看作正(长)方体内及
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版高考数学文培优增分一轮全国经典版培优讲义:第7章立体几何 第3讲空间点、直线、平面之间的位置关系 2019 高考 数学 培优增分 一轮 全国 经典 版培优 讲义 立体几何 空间 直线
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-2614889.html
限制150内