2018版高中数学人教B版选修1-1学案:第二单元 2.2.2 双曲线的几何性质 .docx
《2018版高中数学人教B版选修1-1学案:第二单元 2.2.2 双曲线的几何性质 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版选修1-1学案:第二单元 2.2.2 双曲线的几何性质 .docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、22.2双曲线的几何性质学习目标1.了解双曲线的几何性质,如范围、对称性、顶点、渐近线和离心率等.2.能用双曲线的简单性质解决一些简单问题.3.能区别椭圆与双曲线的性质知识点一双曲线的几何性质类比椭圆的几何性质,结合图象得到双曲线的几何性质如下表:标准方程1(a0,b0)1(a0,b0)图形性质范围对称性对称轴:_对称中心:_对称轴:_对称中心:_顶点坐标渐近线yxyx离心率e,e(1,)知识点二双曲线的离心率思考1如何求双曲线的渐近线方程?思考2椭圆中,椭圆的离心率可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?梳理双曲线的半焦距
2、c与实半轴a的比叫做双曲线的,其取值范围是_e越大,双曲线的开口_类型一已知双曲线的标准方程求其简单性质例1求双曲线9y24x236的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程反思与感悟由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式是解决本题的关键(2)由标准方程确定焦点位置,确定a,b的值(3)由c2a2b2求出c值,从而写出双曲线的几何性质跟踪训练1求双曲线9y216x2144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程类型二由双曲线的几何性质确定标准方程例2求适合下列条件的双曲线的标准方程(1)虚轴长为12,离心率为;(2)顶点间距离为6,渐近线方程
3、为yx;(3)求与双曲线x22y22有公共渐近线,且过点M(2,2)的双曲线方程反思与感悟(1)求双曲线的标准方程的步骤:确定或分类讨论双曲线的焦点所在的坐标轴;设双曲线的标准方程;根据已知条件或几何性质列方程,求待定系数;求出a,b,写出方程(2)与双曲线1共焦点的双曲线方程可设为1(0,b2a2)与双曲线1具有相同渐近线的双曲线方程可设为(0)渐近线为axby0的双曲线方程可设为a2x2b2y2(0)跟踪训练2求适合下列条件的双曲线的标准方程(1)一个焦点为(0,13),且离心率为;(2)双曲线过点(3,9),离心率e;(3)渐近线方程为yx,且经过点A(2,3)类型三与双曲线有关的离心率
4、问题例3分别求适合下列条件的双曲线的离心率(1)双曲线的渐近线方程为yx;(2)双曲线1(0ab)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c.反思与感悟求双曲线的离心率,通常先由题设条件得到a,b,c的关系式,再根据c2a2b2,直接求a,c的值而在解题时常把或视为整体,把关系式转化为关于或的方程,解方程求之,从而得到离心率的值在本题的(2)中,要注意条件0a0,b0)的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果PF2Q90,求双曲线的离心率类型四直线与双曲线的位置关系例4已知直线yax1与双曲线3x2y21.(1)如果直线与双曲线有两个公共点,求a
5、的取值范围;(2)如果直线与双曲线只有一个公共点,求a的取值范围;(3)如果直线与双曲线没有公共点,求a的取值范围反思与感悟直线与双曲线的位置关系问题的求解要注意常用方法的应用,即将直线方程代入双曲线的标准方程,得到一元二次方程,这个方程的根就是直线与双曲线交点的横(纵)坐标利用根与系数的关系可以解决有关弦长、弦中点、轨迹等问题(1)直线与双曲线的位置的判断方法直线与双曲线位置关系的判定有时通过联立方程组求解,有时也要结合图形进行求解联立消去y,得(b2a2k2)x22a2kmxa2m2a2b20.当b2a2k20时,式为一次方程,仅有一解,此时直线与双曲线的渐近线平行,与双曲线有一个公共点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学人教B版选修1-1学案:第二单元 2.2.2 双曲线的几何性质 2018 高中 学人 选修 第二 单元 2.2 双曲线 几何 性质
限制150内