2022年热力学与统计物理第二章知识总结 .pdf
《2022年热力学与统计物理第二章知识总结 .pdf》由会员分享,可在线阅读,更多相关《2022年热力学与统计物理第二章知识总结 .pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载2.1 内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律, 而且其它热力学函数也可以由这三个基本热力学函数导出。焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,将( 1)式代入上式得(2) o自由能的全微分由得(3) o吉布斯函数的全微分(4) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 21
2、 页学习必备欢迎下载从方程( 1)( 2)( 3)( 4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH , dF,和 dG独立变量分别是S,V;S,P;T,V和 T,P 所以函数U(S,V),H(S,P ), F(T,V), G (T,P)就是我们在2.5 将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。二、热力学( Maxwell )关系 ( 麦克斯韦或麦氏) (1)U(S ,V)利用全微分性质( 5)用( 1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2) H(S,P)同( 2)式相比有由得(8)(3) F (T,V)精选学习
3、资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 21 页学习必备欢迎下载同( 3)式相比(9)(4) G(T,P)同( 4)式相比有(10)(7) ,(8) ,( 9) ,(10) 式给出了热力学量的偏导数之间的关系,称为麦克斯韦 (J.C.Maxwell)关系, 简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如, 只要知道物态方程,就可以利用(9),( 10)式求出熵的变化,即可求出熵函数。2.2 麦氏关系的简单应用证明1. 求选 T,V 为独立
4、变量,则内能U(T,V)的全微分为(1)熵函数 S(T,V) 的全微分为( 2) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 21 页学习必备欢迎下载又有热力学基本方程(3) 由(2) 代入 (3) 式得(4) (4) 相比可得(5) (6) 由定容热容量的定义得(7) 2. 求选 T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以 T、P为自变量时熵S(T、P)的全微分表达式为(10) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 21 页学习必备欢迎下载将(
5、10) 代入 (9) 得(11) (8) 式和 (11) 式相比较得(12) (13) (14) 3 求由(7) (14)式得(15) 把熵 S看作 T,V 的函数 , 再把 V看成 T,P 的函数 , 即对上式求全微分得代入( 15)式得精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 21 页学习必备欢迎下载由麦氏关系得(16)即得证4、P,V,T 三个变量之间存在偏导数关系而可证(17)2.3 气体的节流过程和绝热膨胀过程气体的节流过程( 节流膨胀 ) 和绝热膨胀是获得低温的两种常用方法, 我们利用热力学函数来分析这两种过程的性质一
6、, 气体的节流 ( 焦耳 - 汤姆逊效应 ) 1、定义:如图所示精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 21 页学习必备欢迎下载有一由绝热材料制成的管子, 中间用一多孔塞( 节流阀 ) 隔开 ,塞子一边维持较高的压强P ,另一边维持较低的压强P, 在压力的作用下, 气体由高压的一边经过多孔塞流向低压的一边。由于多孔塞对气流的巨大的阻力,气体的宏观流速极小,因而对应的动能可以略去。我们把气体在绝热条件下,气体由稳定的高压经过多孔塞流到稳定的低压一侧的过程称为气体的节流过程。2、特点:它是不可逆的,这是显然的,因为气体通过多孔塞时,
7、要克服阻力作功,这种功转变成热。初态与末态等焓,证明如下开始在多孔塞左边取一定量的气体,压强为,体积为,内能为. 气体通过多孔塞后,其压强、体积、内能分别为,气体在节流过程前后,内能增加为,外界对这部分气体所作的功是,因为过程是绝热的,根据热力学第一定律有移项后得根据焓的定义式得(1)焓是一个状态量, 可见节流前后气体的焓不发生变化,但对于气体在过程中所经历的非平衡态焓是没有定义的。这儿指的是初态和终态气体的焓相等。J-Th 效应实验表明:气体经节流后,其温度可能升高,也可能降低,也可能不变,我们称在节流过程中温度随压强改变的现象为焦耳汤姆逊效应。这个效应用焦汤系数来表示,它的定义为(2)上式
8、的右方表示在等焓过程中温度随压强的改变,应当注意的是在节流过程中气体的压强总是降低的( dp0), 因而精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 21 页学习必备欢迎下载1)当时,表明节流后气体的温度降低了,气体节流后变化了,称为正效应;2)时,即在节流后气体变热了,叫做负效应;3)时,气体经节流后温度不变,叫做零效应;一种气体节流后温度如何变化与状态方程及气体节流前后的状态有关。3,与态式的关系取 T,P为状态参量,状态函数焓可表为H=H ( T,P)。应用数学公式,其偏导数间应存在下述关系:及定量热容量得(3)又由体胀系数定义
9、代入上式得(3)( 4)给出了焦汤系数与物态方程及热容量的关系将 1mol 理想气体物态方程代入(3)得精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 21 页学习必备欢迎下载说明理想气体在节流过程前后温度不变,理想气体没有焦汤效应。JTh 图(3)式右边的参量是可以由实验测量的,我们可以画出TP曲线,如图是的 JTh 图,图中实验代表等焓线,可由实验直接测定,等函数的斜线,虚线处等函数的斜线,使的温度称为焦汤效应的转换温度,的曲线称为转换曲线,如图所示虚线即表示转换曲线。虚线左边,节流过程降温(正效应),虚线右边,节流过程升温(负效应
10、)。所以可以利用节流的降温效应使气体降温而液化。二、气体的绝热膨胀精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 21 页学习必备欢迎下载另一种使气体降温的有效方法是使气体作准静态的(可逆)绝热膨胀(等熵膨胀),因为绝热过程所以, 所以准静态绝热过程系统的熵不变。分析绝热膨胀过程中气体的温度随压强的变化关系,取 T,P为状态参量,状态函数熵可表为S=S ( T,P)。其全微分方程由,和麦氏关系代入上式得(5)上式右方总是正的,所以,这表示气体在绝热膨胀中随着压强的减小,它的温度总是降低的,也就是气体绝热膨胀变冷了。2,4 基本热力学函数
11、的确定我们通过热力学第一和第二定律,态函数的全微分特性及Maxwell 关系, 导出热力学函数的微积分方程表达式,并通过此函数给出内能和熵的直接测量参数的表达式,即可认为这个热力学函数可被测定了。1、以 T,V 为状态参量,基本热力学函数的测定物态方程为(1)内能的全微分为(2) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 21 页学习必备欢迎下载沿一条任意的积分路线求积分,可得(3)(3)式既内能的积分表达式。以,为变量熵的全微分为()求线积分得()此即熵的积分表达式由(),()式可知,如果测得物质的和物质方程即可求得内能函数和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年热力学与统计物理第二章知识总结 2022 热力学 统计 物理 第二 知识 总结
限制150内