2022年最新人教版高中数学必修一知识点与重难点 .pdf
《2022年最新人教版高中数学必修一知识点与重难点 .pdf》由会员分享,可在线阅读,更多相关《2022年最新人教版高中数学必修一知识点与重难点 .pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档精品文档人教版高中数学必修一各章节知识点与重难点第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、 “属于”的概念我们通常用大写的拉丁字母A,B,C, 表示集合,用小写拉丁字母a,b,c, 表示元素如:如果a是集合 A 的元素,就说a属于集合 A 记作 aA,如果 a 不属于集合A 记作aA 3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作 :N* 或 N+ ;整数集记作 :Z;有
2、理数集记作 :Q;实数集记作 :R 4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-32 的解集是 x R| x-32 或x| x-32 (3)图示法( Venn图)【重点】 集合的基本概念和表示方法【难点】 运用集合的三种常用表示方法正确表示一些简单的集合名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 22
3、 页 - - - - - - - - - 精品文档精品文档1.1.2 集合间的基本关系【知识要点】1、 “包含”关系子集一般地,对于两个集合A 与 B,如果集合A 的任何一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合 B 的子集,记作AB 2、 “相等”关系如果集合 A 的任何一个元素都是集合B 的元素, 同时 ,集合 B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合 B,即: A=BABBA且3、真子集如果 AB,且 AB 那就说集合A 是集合 B 的真子集,记作AB(或 BA) 4、空集不含任何元素的集合叫做空集,记为规定 : 空集是任何集合的子集
4、,空集是任何非空集合的真子集. 【重点】 子集与空集的概念;用Venn 图表达集合间的关系【难点】 弄清元素与子集、属于与包含之间的区别名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 22 页 - - - - - - - - - 精品文档精品文档1.1.3 集合的基本运算【知识要点】1、交集的定义一般地,由所有属于A 且属于 B 的元素所组成的集合,叫做 A,B 的交集记作AB(读作“ A交 B”),即 AB=x| x A,且 xB 2、并集的定义一般地,由所有属于集合A
5、 或属于集合B 的元素所组成的集合,叫做A,B 的并集。记作:AB( 读作“ A 并 B”),即 AB=x | x A,或 xB 3、交集与并集的性质AA = A, A = , AB = B A,AA = A ,A= A , AB = B A. 4、全集与补集(1)全集如果集合 U 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U 来表示。(2)补集设 U 是一个集合,A 是 U 的一个子集(即AU) ,由 U 中所有不属于A 的元素组成的集合,叫做 U 中子集 A 的补集(或余集) 。记作:CUA ,即CSA =x | xU 且 xA (3)性质CU(C UA)=A
6、 ,(C UA)A= ,(C UA)A=U ;(C UA)(C UB)=C U(AB),(C UA)(C UB)=C U(AB). 【重点】集合的交集、并集、补集的概念【难点】集合的交集、并集、补集的概念与应用名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 22 页 - - - - - - - - - 精品文档精品文档1.2 函数及其表示1.2.1 函数的概念【知识要点】1、函数的概念设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,
7、在集合 B 中都有唯一确定的数f(x) 和它对应,那么就称 f: AB 为从集合 A 到集合 B 的一个函数记作:y=f(x) ,xA其中, x 叫做自变量, x 的取值范围A 叫做函数的定义域;与 x 的值相对应的y 值叫做函数值,函数值的集合 f(x)| x A 叫做函数的值域【注意】(1)如果只给出解析式y=f(x) ,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;(2)函数的定义域、值域要写成集合或区间的形式【定义域补充】求函数的定义域时列不等式组的主要依据是(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指
8、数、对数式的底数必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的 x 的值组成的集合. (6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义. (注意:求出不等式组的解集即为函数的定义域.) 2、构成函数的三要素定义域、对应关系和值域【注意】(1)构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。3、相同
9、函数的判断方法(1)定义域一致;(2)表达式相同(两点必须同时具备) 【值域补充】(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 22 页 - - - - - - - - - 精品文档精品文档义域 . (2)应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。4、区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴
10、表示【重点】 理解函数的模型化思想,用集合与对应的语言来刻画函数【难点】 符号“ y=f(x) ”的含义,函数定义域和值域的区间表示名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 22 页 - - - - - - - - - 精品文档精品文档1.2.2 函数的表示法【知识要点】1、常用的函数表示法及各自的优点(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据:作垂直于x 轴的直线与曲线最多有一个交点。(2)函数的表示法
11、解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征【注意】解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值2、分段函数在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况注意:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集3
12、、复合函数如果 y=f(u),(u M),u=g(x),(x A),则 y=fg(x)=F(x) ,(xA) 称为 f 是 g 的复合函数 . 4、函数图象知识归纳(1)定义在平面直角坐标系中,以函数y=f(x) , (x A)中的 x 为横坐标,函数值y 为纵坐标的点P(x,y)的集合 C,叫做函数y=f(x),(x A) 的图象C 上每一点的坐标(x,y)均满足函数关系y=f(x) ,反过来, 以满足 y=f(x) 的每一组有序实数对x、y 为坐标的点 (x,y),均在 C 上 . 即记为 C= P(x,y) | y= f(x) , xA 图象 C一般的是一条光滑的连续曲线(或直线 ),也
13、可能是由与任意平行于Y 轴的直线最多只有一个交点的若干条曲线或离散点组成. (2)画法A、描点法根据函数解析式和定义域,求出x,y 的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点 P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法常用变换方法有三种,即平移变换、对称变换和伸缩变换()对称变换将 y= f(x) 在 x 轴下方的图象向上翻得到y=f(x) 的图象如:书上P21 例 5 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 22 页 -
14、 - - - - - - - - 精品文档精品文档y= f(x) 和 y= f(-x) 的图象关于y 轴对称。如1xxxyayaa与y= f(x) 和 y= -f(x) 的图象关于x 轴对称。如1logloglogaaayxyxx与()平移变换由 f(x)得到 f(xa) 左加右减;由 f(x)得到 f(x)a 上加下减(3)作用A、直观的看出函数的性质;B、利用数形结合的方法分析解题的思路;C、提高解题的速度;发现解题中的错误。5、映射定义 :一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合 B 中都有唯一确定的元素y 与之对应,那么就
15、称对应f:AB 为从集合 A 到集合 B 的一个映射。记作“f:AB”给定一个集合A 到 B 的映射,如果aA,b B.且元素 a 和元素 b 对应,那么,我们把元素b叫做元素a的象,元素a 叫做元素 b 的原象【说明 】函数是一种特殊的映射,映射是一种特殊的对应(1)集合 A、B 及对应法则f 是确定的;(2)对应法则有“方向性”,即强调从集合A 到集合 B 的对应,它与从B 到 A 的对应关系一般是不同的;(3)对于映射f:AB 来说,则应满足:()集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;()集合A 中不同的元素,在集合B 中对应的象可以是同一个;()不要求集合B 中的
16、每一个元素在集合A 中都有原象。6、函数的解析式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:待定系数法、换元法、消参法等A、如果已知函数解析式的构造时,可用待定系数法;B、已知复合函数fg(x) 的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;C、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 【重点】 函数的三种表示法,分段函数的概念,映射的概念【难点】 根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象,映射的概念名师
17、资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 22 页 - - - - - - - - - 精品文档精品文档1.3 函数的基本性质1.3.1 函数单调性与最大(小)值【知识要点】1、函数的单调性定义设函数 y=f(x) 的定义域为I,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当 x1x2时,都有 f(x1)f(x2),那么就说 f(x) 在区间 D 上是 增函数 。区间 D 称为 y=f(x) 的单调增区间;如果对于区间D 上的任意两个自变量的值x1,
18、x2,当 x1x2时,都有 f(x1)f(x2),那么就说f(x)在这个区间上是减函数 .区间 D 称为 y=f(x) 的单调减区间 . 【注意】(1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2)必须是对于区间D 内的任意 两个自变量x1,x2;当 x1x2时,总有f(x1)f(x2) (或 f(x1)f(x2)) 。2、图象的特点如果函数 y=f(x) 在某个区间是增函数或减函数,那么说函数y=f(x) 在这一区间上具有(严格的 )单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 3、函数单调区间与单调性的判定方法(A) 定义法任取 x
19、1,x2D,且 x1 0(C 为常数)时,( )yf x与( )yC f x的单调性相同;当 C 0(C 为常数)时,( )yf x与( )yC f x的单调性相反;函数( )fx、( )g x都是增(减)函数,则( )( )f xg x仍是增(减)函数;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 22 页 - - - - - - - - - 精品文档精品文档若( )0,( )0f xg x且( )f x与( )g x都是增(减)函数,则( )( )f xg x也是增
20、(减)函数;若( )0,( )0f xg x且( )f x与( )g x都是增(减)函数,则( )( )f xg x也是减(增)函数;设( )0f x,若( )f x在定义域上是增函数,则( )nf x、( )(0)k fx k、( )(1)nfx n都是增函数,而1( )f x是减函数 . 5、函数的最大(小)值定义()一般地,设函数y=f(x) 的定义域为I,如果存在实数M 满足:(1)对于任意的xI,都有 f(x) M;(2)存在 x0I,使得 f(x0) = M 那么,称M 是函数 y=f(x) 的最大值()一般地,设函数y=f(x) 的定义域为I,如果存在实数M 满足(1)对于任意的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年最新人教版高中数学必修一知识点与重难点 2022 新人 高中数学 必修 知识点 难点
限制150内