江苏地区南京师范大学附属中学2018年度届高三数学模拟考试库资料.doc

收藏

编号:2615840    类型:共享资源    大小:368.59KB    格式:DOC    上传时间:2020-04-24
8
金币
关 键 词:
江苏 地区 南京师范大学 附属中学 年度 高三 数学 模拟考试 资料
资源描述:
^` www.ks5u.com 2018届高三模拟考试试卷 数  学 (满分160分,考试时间120分钟) 2018.5 参考公式: 锥体的体积公式:V=Sh,其中S为锥体的底面积,h为锥体的高. 一、 填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合A={0,1,2,3},B={x|x2-x-2<0},则A∩B=________. 2. 若复数z=1-i,则z+ 的虚部是________. 3. 某公司生产甲、乙、丙三种不同型号的轿车,产量分别为1 400辆、5 600辆、2 000辆.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取45辆进行检验,则应从丙种型号的产品中抽取________件. 4. 设变量x,y满足约束条件 则目标函数z=-2x+y的最大值是________. 5. 小明随机播放A,B,C,D,E 五首歌曲中的两首,则A,B 两首歌曲至少有一首被播放的概率是________. 6. 如图是一个算法的流程图,则输出的n的值是________. (第6题)    (第7题) 7. 如图,直三棱柱ABC-A1B1C1的各条棱长均为2,D为棱B1C1上任意一点,则三棱锥D-A1BC的体积是________. 8. 已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=2x,它的一个焦点与抛物线y2=20x的焦点相同,则双曲线的方程是________________. 9. 若直线y=2x+b是曲线y=ex-2的切线,则实数b=________. 10. “a=1”是“函数f(x)=+sin x-a2为奇函数”的________条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 11. 在数列{an}中,若a4=1,a12=5,且任意连续三项的和都是15,则a2 018=________. 12. 已知直线x-y+b=0与圆x2+y2=9交于不同的两点A,B.若O是坐标原点,且|+|≥||,则实数b的取值范围是________________. 13. 在△ABC中,已知+2=3,则cos C的最小值是________. 14. 已知函数f(x)=x3-3x2+1,g(x)= 若方程g(f(x))-a=0(a>0)有6个实数根(互不相同),则实数a的取值范围是________. 二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分) 已知A,B,C是△ABC的三个内角,向量 m=(-1,),n=(cos A,sin A),且mn=1. (1) 求A的值; (2) 若=-3,求tan C的值. 16. (本小题满分14分) 如图,在四棱锥PABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F. (1) 求证:AB∥EF; (2) 若AF⊥EF,求证:平面PAD⊥平面ABCD. 17. (本小题满分14分) 如图,A,B,C三个警亭有直道相通,已知A在B的正北方向6千米处,C在B的正东方向6千米处. (1) 警员甲从C出发,沿CA行至点P处,此时∠CBP=45,求PB的距离; (2) 警员甲从C出发沿CA前往A,警员乙从A出发沿AB前往B,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达B后原地等待,直到甲到达A时任务结束.若对讲机的有效通话距离不超过9千米,试求两人通过对讲机能保持联系的总时长. 18. (本小题满分16分) 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆C经过点(0,),离心率为,直线l过点F2与椭圆C交于A,B两点. (1) 求椭圆C的方程; (2) 若点N为△F1AF2的内心(三角形三条内角平分线的交点),求△F1NF2与△F1AF2面积的比值; (3) 设点A,F2,B在直线x=4上的射影依次为点D,G, E.连结AE,BD,试问:当直线l的倾斜角变化时,直线AE与BD是否相交于定点T?若是,请求出定点T的坐标;若不是,请说明理由. 19. (本小题满分16分) 已知函数f(x)=ln x-ax+a,a∈R. (1) 若a=1,求函数f(x)的极值; (2) 若函数f(x)有两个零点,求a的取值范围; (3) 对于曲线y=f(x)上的两个不同的点P(x1,f(x1)),Q(x2,f(x2)),记直线PQ的斜率为k,若y=f(x)的导函数为f ′(x),证明:f ′<k. 20. (本小题满分16分) 已知等差数列{an}和等比数列{bn}均不是常数列,若a1=b1=1,且a1,2a2,4a4成等比数列,4b2,2b3,b4成等差数列. (1) 求{an}和{bn}的通项公式; (2) 设m,n是正整数,若存在正整数i,j,k(i<j<k),使得ambj,amanbi,anbk成等差数列,求m+n的最小值; (3) 令cn=,记{cn}的前n项和为Tn,的前n项和为An.若数列{pn}满足p1=c1,且对∀n≥2,n∈N*,都有pn=+Ancn,设{pn}的前n项和为Sn,求证:Sn<4+4ln n. 2018届高三模拟考试试卷(十九) 数学附加题(满分40分,考试时间30分钟) 21. 【选做题】在A,B,C,D四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修41:几何证明选讲) 在△ABC中,已知AC=AB,CM是∠ACB的平分线,△AMC的外接圆交BC边于点N,求证:BN=2AM. B. (选修42:矩阵与变换) 已知矩阵M=的一个特征值为3,求M的另一个特征值. C. (选修44:坐标系与参数方程) 在极坐标系中,已知圆C:ρ=2cos θ和直线l:θ=(ρ∈R)相交于A,B两点,求线段AB的长. D. (选修45:不等式选讲) 已知a>0,b>0,a+b=1,求证:+≥. 【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. 22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S. (1) 求S=的概率; (2) 求S的分布列及数学期望E(S). 23. 设集合A,B是非空集合M的两个不同子集. (1) 若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数; (2) 若M={a1,a2,a3,…,an},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数. 2018届高三模拟考试试卷 数学参考答案及评分标准 1. {0,1} 2. - 3. 10 4. 5 5.  6. 4 7.  8. -=1 9. -2ln 2 10. 充分不必要 11. 9 12. (-3,-]∪[,3) 13.  14. 15. 解:(1) 因为mn=1,所以(-1,)(cos A,sin A)=1,即sin A-cos A=1,(2分) 则2=1,即sin=.(4分) 又00, 当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,无极值;(2分) 当a>0时,x∈,f′(x)>0,f(x)在上单调递增, x∈,f′(x)<0,f(x)在上单调递减. 故函数有极大值f=a-ln a-1,无极小值. (4分) (2) 解:由(1)可知当a≤0时,f(x)在(0,+∞)上单调递增,不可能有两个零点; 当a>0时,函数有极大值f=a-ln a-1. 令g(x)=x-ln x-1(x>0), 则g′(x)=1-=. 当x∈(0,1),g′(x)<0,g(x)在(0,1)上单调递减; 当x∈(1,+∞),g′(x)>0,g(x)在(1,+∞)上单调递增, 函数g(x)有最小值g(1)=0. 若要使函数f(x)有两个零点,必须满足a>0且a≠1.(6分) 下面证明a>0且a≠1时,函数有两个零点. 因为f(1)=0,所以下面证明f(x)还有另一个零点. ① 当00, f=-2ln a+a-==-. 令h(a)=2aln a-a2+1(0h(1)=0,则f<0,所以f(x)在上有零点. 又f(x)在上单调递减, 所以f(x)在上有唯一零点,从而f(x)有两个零点. ② 当a>1时,f=a-ln a-1>0, f=-a-a+a=-a<0. 易证ea>a,可得<,所以f(x)在上有零点. 又f(x)在上单调递减, 所以f(x)在上有唯一零点,从而f(x)有两个零点. 综上,a的取值范围是(0,1)∪(1,+∞). (10分) (3) 证明:f(x1)-f(x2)=ln x1-ln x2+a(x2-x1), k===-a. 又f′(x)=-a=,f′=-a,(12分) 所以f′-k=-= =. 不妨设0<x2<x1, t=,则t>1,则-ln =-ln t. 令h(t)=-ln t(t>1),则h′(t)=-<0, 因此h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0. 又0<x2<x1,所以x1-x2>0, 所以f ′-k<0,即f ′<k. (16分) 20. 解:(1) 设等差数列的公差为d(d≠0),等比数列的公比为q(q≠1), 由题意,得⇒解得d=1,q=2,(4分) 所以an=n,bn=2n-1. (2) 由ambj,amanbi,anbk成等差数列,有2amanbi=ambj+anbk,即2mn2i-1=m2j-1+n2k-1 . 由于i0,<1,即m>2,则有m+n>6; 所以m+n的最小值为6, 当且仅当j-i=1,k-i=2,且 或 时取得. (10分) (3) 由题意,得p2=+c2,p3=+c3,… Sn=p1+p2+p3+…+pn=(c1+c2+c3+…+cn)(11分) =Tn. Tn=c1+c2+c3+…+cn ①, Tn=c1+c2+…+cn ②. ①-②,得Tn=1++++…+-=2-2-n ,(12分) 解得 Tn=4-(n+2)<4, 所以 Sn<4. 设f(x)=ln x+-1(x>1),则f′(x)=-=>0, 所以 f(x)在(1,+∞)上单调递增,有f(x)>f(1)=0,可得 ln x>1-. (14分) 当k≥2,且k∈N*时,>1,有ln >1-=, 所以
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:江苏地区南京师范大学附属中学2018年度届高三数学模拟考试库资料.doc
链接地址:https://www.taowenge.com/p-2615840.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开