2017-2018学年高中数学北师大版选修2-3教学案:第二章 3 条件概率与独立事件 .doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2017-2018学年高中数学北师大版选修2-3教学案:第二章 3 条件概率与独立事件 .doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学北师大版选修2-3教学案:第二章 3 条件概率与独立事件 .doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3条件概率与独立事件 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格令A产品的长度合格,B产品的质量合格,AB产品的长度、质量都合格问题1:试求P(A),P(B),P(AB)提示:P(A),P(B),P(AB).问题2:任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格概率提示:若用A|B表示上述事件,则A|B发生相当于从90件产品中任取1件长度合格,其概率为P(A|B).问题3:如何理解问题2?提示:在质量合格的情况下,长度又合格,即事件B发生的条件下事件A发生问题4:试探求P(B),P(AB),P(A|B)间的关系提示:
2、P(A|B).条件概率(1)概念事件B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为P(A|B)(2)公式P(A|B)(其中,AB也可记成AB)(3)当P(A)0时,A发生时B发生的条件概率为P(B|A).独立事件有这样一项活动:甲箱里装有3个白球,2个黑球,乙箱里装有2个白球,2个黑球,从这两个箱子里分别摸出1个球,记事件A从甲箱里摸出白球,B从乙箱里摸出白球问题1:事件A发生会影响事件B发生的概率吗?提示:不影响问题2:试求P(A),P(B),P(AB)提示:P(A),P(B),P(AB).问题3:P(AB)与P(A),P(B)有什么关系?提示:P(AB)P(A)P(B).
3、问题4:P(B|A)与P(B)相等吗?提示:相等,由P(B|A),可得P(B|A)P(B)独立事件(1)概念:对两个事件A,B,如果P(AB)P(A)P(B),则称A,B相互独立(2)推广:若A与B相互独立,则A与,与B,与也相互独立(3)拓展:若A1,A2,An相互独立,则有P(A1A2An)P(A1)P(A2)P(An)1由条件概率的定义知,P(B|A)与P(A|B)是不同的;另外,在事件A发生的前提下,事件B发生的概率为P(B|A),其值不一定等于P(B)2事件A与B相互独立就是事件A的发生不影响事件B发生的概率,事件B的发生不影响事件A发生的概率 条件概率例1盒中装有5个产品,其中3个
4、一等品,2个二等品,不放回地从中取产品,每次取1个求:(1)取两次,两次都取得一等品的概率,(2)取两次,第二次取得一等品的概率;(3)取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率思路点拨由于是不放回地从中取产品,所以第二次抽取受到第一次的影响,因而是条件概率,应用条件概率中的乘法公式求解精解详析记Ai为第i次取到一等品,其中i1,2.(1)取两次,两次都取得一等品的概率,P(A1A2)P(A1)P(A2|A1).(2)取两次,第二次取得一等品,则第一次有可能取到一等品,也可能取到二等品,则P(A2)P(A2)P(A1A2).(3)取两次,已知第二次取得一等品,则第一次取得
5、二等品的概率为P(|A2).一点通求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A),其中n(AB)表示事件AB包含的基本事件个数,n(A)表示事件A包含的基本事件个数二是直接根据定义计算,P(B|A),特别要注意P(AB)的求法1抛掷一枚质地均匀的骰子所出现的点数的所有可能结果为1,2,3,4,5,6,记事件A2,3,5,B1,2,4,5,6,则P(A|B)()A.B.C. D.解析:P(B),P(AB),P(A|B).答案:C2已知P(A|B),P(B),则P(AB)_.解析:P(A|B),P(AB)P(A|B)P(B).答案:3甲、乙两地都
6、位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”为事件A,“乙地为雨天”为事件B,由题意,得P(A)0.20,P(B)0.18,P(AB)0.12.(1)乙地为雨天时甲地也为雨天的概率是P(A|B)0.67.(2)甲地为雨天时乙地也为雨天的概率是P(B|A)0.60.独立事件的判断例2一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A一个家庭中既有男孩又有女孩,B一个家庭中最多有一个女孩,对下述两种情形
7、,讨论A与B的独立性:(1)家庭中有两个小孩;(2)家庭中有三个小孩思路点拨先写出家庭中有两个小孩的所有可能情形,需注意基本事件(男,女),(女,男)是不同的,然后分别求出A,B所含的基本事件数,由于生男生女具有等可能性,故可借助古典概型来求P(A),P(B)及P(AB)的概率,最后分析P(AB)是否等于P(A)P(B)精解详析(1)有两个小孩的家庭,男孩、女孩的可能情形为(男,男),(男,女),(女,男),(女,女),它有4个基本事件,由等可能性知每个基本事件的概率都为.A(男,女),(女,男),B(男,男),(男,女),(女,男),AB(男,女),(女,男),P(A),P(B),P(AB)
8、.P(A)P(B)P(AB)事件A,B不相互独立(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女),由等可能性知这8个基本事件的概率均为,这时A中含有6个基本事件,B中含有4个基本事件,AB中含有3个基本事件于是P(A),P(B),P(AB),显然有P(AB)P(A)P(B)成立,从而事件A与B是相互独立的一点通(1)利用相互独立事件的定义(即P(AB)P(A)P(B)可以准确地判定两个事件是否相互独立,这是用定量计算方法判断,因此我们必须熟练掌握(2)判别两个事
9、件是否为相互独立事件也可以从定性的角度进行分析,也就是看一个事件的发生对另一个事件的发生是否有影响没有影响就是相互独立事件;有影响就不是相互独立事件4若A与B相互独立,则下面不是相互独立事件的是()AA与 BA与C.与B D.与解析:当A,B相互独立时,A与,与B以及与都是相互独立的,而A与是对立事件,不相互独立答案:A5从一副扑克牌(52张)中任抽一张,设A“抽得老K”,B“抽得红牌”,判断事件A与B是否相互独立解:抽到老K的概率为P(A),抽到红牌的概率P(B),故P(A)P(B),事件AB即为“既抽得老K又抽得红牌”,亦即“抽得红桃老K或方块老K”,故P(AB),从而有P(A)P(B)P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017-2018学年高中数学北师大版选修2-3教学案:第二章 条件概率与独立事件 2017 2018 学年 高中数学 北师大 选修 教学 第二 条件 概率 独立 事件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内