空间向量及其立体几何练习进步试题和规范标准答案解析.doc
-!1如图,在四棱锥PABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值【分析】(1)设ACBD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OMPD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PGAD,再由面面垂直的性质可得PG平面ABCD,则PGAD,连接OG,则PGOG,再证明OGAD以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角BPDA的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值【解答】(1)证明:如图,设ACBD=O,ABCD为正方形,O为BD的中点,连接OM,PD平面MAC,PD平面PBD,平面PBD平面AMC=OM,PDOM,则,即M为PB的中点;(2)解:取AD中点G,PA=PD,PGAD,平面PAD平面ABCD,且平面PAD平面ABCD=AD,PG平面ABCD,则PGAD,连接OG,则PGOG,由G是AD的中点,O是AC的中点,可得OGDC,则OGAD以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(2,0,0),P(0,0,),C(2,4,0),B(2,4,0),M(1,2,),设平面PBD的一个法向量为,则由,得,取z=,得取平面PAD的一个法向量为cos=二面角BPDA的大小为60;(3)解:,平面BDP的一个法向量为直线MC与平面BDP所成角的正弦值为|cos|=|=|=【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题2如图,在三棱锥PABC中,PA底面ABC,BAC=90点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2()求证:MN平面BDE;()求二面角CEMN的正弦值;()已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长【分析】()取AB中点F,连接MF、NF,由已知可证MF平面BDE,NF平面BDE得到平面MFN平面BDE,则MN平面BDE;()由PA底面ABC,BAC=90可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角CEMN的余弦值,进一步求得正弦值;()设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长【解答】()证明:取AB中点F,连接MF、NF,M为AD中点,MFBD,BD平面BDE,MF平面BDE,MF平面BDEN为BC中点,NFAC,又D、E分别为AP、PC的中点,DEAC,则NFDEDE平面BDE,NF平面BDE,NF平面BDE又MFNF=F平面MFN平面BDE,则MN平面BDE;()解:PA底面ABC,BAC=90以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系PA=AC=4,AB=2,A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,设平面MEN的一个法向量为,由,得,取z=2,得由图可得平面CME的一个法向量为cos=二面角CEMN的余弦值为,则正弦值为;()解:设AH=t,则H(0,0,t),直线NH与直线BE所成角的余弦值为,|cos|=|=|=解得:t=或t=当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题3如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点()设P是上的一点,且APBE,求CBP的大小; ()当AB=3,AD=2时,求二面角EAGC的大小【分析】()由已知利用线面垂直的判定可得BE平面ABP,得到BEBP,结合EBC=120求得CBP=30; ()法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EMAG,CMAG,说明EMC为所求二面角的平面角求解三角形得二面角EAGC的大小法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角EAGC的大小【解答】解:()APBE,ABBE,且AB,AP平面ABP,ABAP=A,BE平面ABP,又BP平面ABP,BEBP,又EBC=120,因此CBP=30; ()解法一、取的中点H,连接EH,GH,CH,EBC=120,四边形BECH为菱形,AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EMAG,CMAG,EMC为所求二面角的平面角又AM=1,EM=CM=在BEC中,由于EBC=120,由余弦定理得:EC2=22+22222cos120=12,因此EMC为等边三角形,故所求的角为60解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系由题意得:A(0,0,3),E(2,0,0),G(1,3),C(1,0),故,设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=2,得cos=二面角EAGC的大小为60【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题4如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,AFD=90,且二面角DAFE与二面角CBEF都是60()证明平面ABEF平面EFDC;()求二面角EBCA的余弦值【分析】()证明AF平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF平面EFDC;()证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角EBCA的余弦值【解答】()证明:ABEF为正方形,AFEFAFD=90,AFDF,DFEF=F,AF平面EFDC,AF平面ABEF,平面ABEF平面EFDC;()解:由AFDF,AFEF,可得DFE为二面角DAFE的平面角;由ABEF为正方形,AF平面EFDC,BEEF,BE平面EFDC即有CEBE,可得CEF为二面角CBEF的平面角可得DFE=CEF=60ABEF,AB平面EFDC,EF平面EFDC,AB平面EFDC,平面EFDC平面ABCD=CD,AB平面ABCD,ABCD,CDEF,四边形EFDC为等腰梯形以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),=(0,2a,0),=(,2a,a),=(2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,1)设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,4)设二面角EBCA的大小为,则cos=,则二面角EBCA的余弦值为【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键5如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将DEF沿EF折到DEF的位置,OD=()证明:DH平面ABCD;()求二面角BDAC的正弦值【分析】()由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EFAC,再由ABCD是菱形,得ACBD,进一步得到EFBD,由EFDH,可得EFDH,然后求解直角三角形得DHOH,再由线面垂直的判定得DH平面ABCD;()以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD与平面ADC的一个法向量,设二面角二面角BDAC的平面角为,求出|cos|则二面角BDAC的正弦值可求【解答】()证明:ABCD是菱形,AD=DC,又AE=CF=,则EFAC,又由ABCD是菱形,得ACBD,则EFBD,EFDH,则EFDH,AC=6,AO=3,又AB=5,AOOB,OB=4,OH=1,则DH=DH=3,|OD|2=|OH|2+|DH|2,则DHOH,又OHEF=H,DH平面ABCD;()解:以H为坐标原点,建立如图所示空间直角坐标系,AB=5,AC=6,B(5,0,0),C(1,3,0),D(0,0,3),A(1,3,0),设平面ABD的一个法向量为,由,得,取x=3,得y=4,z=5同理可求得平面ADC的一个法向量,设二面角二面角BDAC的平面角为,则|cos|=二面角BDAC的正弦值为sin=【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题6在三棱柱ABCA1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CEEF()证明:平面ABB1A1平面ABC;()若CACB,求直线AC1与平面CEF所成角的正弦值【分析】(I)取AB的中点D,连结CD,DF,DE计算DE,EF,DF,利用勾股定理的逆定理得出DEEF,由三线合一得CDAB,故而CD平面ABB1A1,从而平面ABB1A1平面ABC;(II)以C为原点建立空间直角坐标系,求出和平面CEF的法向量,则直线AC1与平面CEF所成角的正弦值等于|cos|【解答】证明:(I)取AB的中点D,连结CD,DF,DEAC=BC,D是AB的中点,CDAB侧面ABB1A1是边长为2的正方形,AE=,A1F=A1E=,EF=,DE=,DF=,EF2+DE2=DF2,DEEF,又CEEF,CEDE=E,CE平面CDE,DE平面CDE,EF平面CDE,又CD平面CDE,CDEF,又CDAB,AB平面ABB1A1,EF平面ABB1A1,AB,EF为相交直线,CD平面ABB1A1,又CDABC,平面ABB1A1平面ABC(II)平面ABB1A1平面ABC,三棱柱ABCA1B1C1是直三棱柱,CC1平面ABCCACB,AB=2,AC=BC=以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,2)=(,0,2),=(,0,),=(,2)设平面CEF的法向量为=(x,y,z),则,令z=4,得=(,9,4)=10,|=6,|=sin=直线AC1与平面CEF所成角的正弦值为【点评】本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题7如图,在四棱锥中PABCD,PA平面ABCD,ADBC,ADCD,且AD=CD=2,BC=4,PA=2(1)求证:ABPC;(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由【分析】(1)利用直角梯形的性质求出AB,AC的长,根据勾股定理的逆定理得出ABAC,由PA平面ABCD得出ABPA,故AB平面PAC,于是ABPC;(2)假设存在点M,做出二面角的平面角,根据勾股定理求出M到平面ABCD的距离从而确定M的位置,利用棱锥的体积求出B到平面MAC的距离h,根据勾股定理计算BM,则即为所求角的正弦值【解答】解:(1)证明:四边形ABCD是直角梯形,AD=CD=2,BC=4,AC=4,AB=4,ABC是等腰直角三角形,即ABAC,PA平面ABCD,AB平面ABCD,PAAB,AB平面PAC,又PC平面PAC,ABPC(2)假设存在符合条件的点M,过点M作MNAD于N,则MNPA,MN平面ABCD,MNAC过点M作MGAC于G,连接NG,则AC平面MNG,ACNG,即MGN是二面角MACD的平面角若MGN=45,则NG=MN,又AN=NG=MN,MN=1,即M是线段PD的中点存在点M使得二面角MACD的大小为45在三棱锥MABC中,VMABC=SABCMN=,设点B到平面MAC的距离是h,则VBMAC=,MG=MN=,SMAC=2,=,解得h=2在ABN中,AB=4,AN=,BAN=135,BN=,BM=3,BM与平面MAC所成角的正弦值为=【点评】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题8如图,在各棱长均为2的三棱柱ABCA1B1C1中,侧面A1ACC1底面ABC,A1AC=60(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;(2)已知点D满足=+,在直线AA1上是否存在点P,使DP平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由【分析】(1)推导出A1O平面ABC,BOAC,以O为坐标原点,建立如图所示的空间直角坐标系Oxyz,利用向量法能求出侧棱AA1与平面AB1C所成角的正弦值(2)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),则利用向量法能求出存在点P,使DP平面AB1C,其坐标为(0,0,),即恰好为A1点【解答】解:(1)侧面A1ACC1底面ABC,作A1OAC于点O,A1O平面ABC又ABC=A1AC=60,且各棱长都相等,AO=1,OA1=OB=,BOAC(2分)故以O为坐标原点,建立如图所示的空间直角坐标系Oxyz,则A(0,1,0),B(,0,0),A1(0,0,),C(0,1,0),=(0,1,),=(),=(0,2,0)(4分)设平面AB1C的法向量为,则,取x=1,得=(1,0,1)设侧棱AA1与平面AB1C所成角的为,则sin=|cos,|=|=,侧棱AA1与平面AB1C所成角的正弦值为(6分)(2)=,而,=(2,0,0),又B(),点D(,0,0)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),DP平面AB1C,=(1,0,1)为平面AB1C的法向量,由=,得,y=0(10分)又DP平面AB1C,故存在点P,使DP平面AB1C,其坐标为(0,0,),即恰好为A1点(12分)【点评】本题考查线面角的正弦值的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用9在三棱柱ABCA1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO平面ABB1A1()证明:平面AB1C平面BCD;()若OC=OA,AB1C的重心为G,求直线GD与平面ABC所成角的正弦值【分析】()通过证明AB1BD,AB1CO,推出AB1平面BCD,然后证明平面AB1C平面BCD()以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系Oxyz求出平面ABC的法向量,设直线GD与平面ABC所成角,利用空间向量的数量积求解直线GD与平面ABC所成角的正弦值即可【解答】(本小题满分12分)解:()ABB1A1为矩形,AB=2,D是AA1的中点,BAD=90,从而,ABD=AB1B,(2分),从而AB1BD(4分)CO平面ABB1A1,AB1平面ABB1A1,AB1CO,BDCO=O,AB1平面BCD,AB1平面AB1C,平面AB1C平面BCD(6分)()如图,以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系Oxyz在矩形ABB1A1中,由于ADBB1,所以AOD和B1OB相似,从而又,G为AB1C的重心,(8分)设平面ABC的法向量为,由可得,令y=1,则z=1,所以(10分)设直线GD与平面ABC所成角,则=,所以直线GD与平面ABC所成角的正弦值为(12分)【点评】本题考查平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力10在矩形ABCD中,AB=4,AD=2,将ABD沿BD折起,使得点A折起至A,设二面角ABDC的大小为(1)当=90时,求AC的长;(2)当cos=时,求BC与平面ABD所成角的正弦值【分析】(1)过A作BD的垂线交BD于E,交DC于F,连接CE,利用勾股定理及余弦定理计算AE,CE,由AECE得出AC;(2)利用余弦定理可得AF=,从而得出AF平面ABCD,以F为原点建立坐标系,求出和平面ABD的法向量,则BC与平面ABD所成角的正弦值为|cos|【解答】解:(1)在图1中,过A作BD的垂线交BD于E,交DC于F,连接CEAB=4,AD=2,BD=10,BE=8,cosCBE=在BCE中,由余弦定理得CE=2=90,AE平面ABCD,AECE|AC|=2(2)DE=2tanFDE=,EF=1,DF=当即cosAEF=时,AE2=AF2+EF2,AFE=90又BDAE,BDEF,BD平面AEF,BDAFAF平面ABCD以F为原点,以FC为x轴,以过F的AD的平行线为y轴,以FA为z轴建立空间直角坐标系如图所示:A(0,0,),D(,0,0),B(3,2,0),C(3,0,0)=(0,2,0),=(4,2,0),=(,0,)设平面ABD的法向量为=(x,y,z),则,令z=1得=(,2,1)cos=BC与平面ABD所成角的正弦值为【点评】本题考查了空间角与空间距离的计算,空间向量的应用,属于中档题11如图,由直三棱柱ABCA1B1C1和四棱锥DBB1C1C构成的几何体中,BAC=90,AB=1,BC=BB1=2,C1D=CD=,平面CC1D平面ACC1A1()求证:ACDC1;()若M为DC1的中点,求证:AM平面DBB1;()在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由【分析】()证明ACCC1,得到AC平面CC1D,即可证明ACDC1()易得BAC=90,建立空间直角坐标系Axyz,依据已知条件可得A(0,0,0),B(0,0,1),B1(2,0,1),利用向量求得AM与平面DBB1所成角为0,即AM平面DBB1()利用向量求解【解答】解:()证明:在直三棱柱ABCA1B1C1中,CC1平面ABC,故ACCC1,由平面CC1D平面ACC1A1,且平面CC1D平面ACC1A1=CC1,所以AC平面CC1D,又C1D平面CC1D,所以ACDC1()证明:在直三棱柱ABCA1B1C1中,AA1平面ABC,所以AA1AB,AA1AC,又BAC=90,所以,如图建立空间直角坐标系Axyz,依据已知条件可得A(0,0,0),B(0,0,1),B1(2,0,1),所以,设平面DBB1的法向量为,由即令y=1,则,x=0,于是,因为M为DC1中点,所以,所以,由,可得,所以AM与平面DBB1所成角为0,即AM平面DBB1()解:由()可知平面BB1D的法向量为设,0,1,则,若直线DP与平面DBB1成角为,则,解得,故不存在这样的点【点评】本题考查了空间线线垂直、线面平行的判定,向量法求二面角属于中档题12如图,在多面体ABCDEF中,底面ABCD为正方形,平面AED平面ABCD,AB=EA=ED,EFBD( I)证明:AECD( II)在棱ED上是否存在点M,使得直线AM与平面EFBD所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由【分析】(I)利用面面垂直的性质得出CD平面AED,故而AECD;(II)取AD的中点O,连接EO,以O为原点建立坐标系,设,求出平面BDEF的法向量,令|cos|=,根据方程的解得出结论【解答】(I)证明:四边形ABCD是正方形,CDAD,又平面AED平面ABCD,平面AED平面ABCD=AD,CD平面ABCD,CD平面AED,AE平面AED,AECD(II)解:取AD的中点O,过O作ONAB交BC于N,连接EO,EA=ED,OEAD,又平面AED平面ABCD,平面AED平面ABCD=AD,OE平面AED,OE平面ABCD,以O为原点建立空间直角坐标系Oxyz,如图所示:设正方形ACD的边长为2,则A(1,0,0),B(1,2,0),D(1,0,0),E(0,0,1),M(,0,1)=(1,0,1),=(1,0,1),=(2,2,0),设平面BDEF的法向量为=(x,y,z),则,即,令x=1得=(1,1,1),cos=,令|=,解得=0,当M与点E重合时,直线AM与平面EFBD所成角的正弦值为【点评】本题考查了线面垂直的判定,空间向量与线面角的计算,属于中档题13如图,在四棱锥PABCD中,ABC=ACD=90,BAC=CAD=60,PA平面ABCD,PA=2,AB=1(1)设点E为PD的中点,求证:CE平面PAB;(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角的正弦值为?若存在,试确定点N的位置,若不存在,请说明理由【分析】(1)取AD中点M,利用三角形的中位线证明EM平面PAB,利用同位角相等证明MCAB,得到平面EMC平面PAB,证得EC平面PAB;(2)建立坐标系,求出平面PAC的法向量,利用直线CN与平面PAC所成的角的正弦值为,可得结论【解答】(1)证明:取AD中点M,连EM,CM,则EMPAEM平面PAB,PA平面PAB,EM平面PAB在RtACD中,CAD=60,AC=AM=2,ACM=60而BAC=60,MCABMC平面PAB,AB平面PAB,MC平面PABEMMC=M,平面EMC平面PABEC平面EMC,EC平面PAB(2)解:过A作AFAD,交BC于F,建立如图所示的坐标系,则A(0,0,0),B(,0),C(,1,0),D(0,4,0),P(0,0,2),设平面PAC的法向量为=(x,y,z),则,取=(,3,0),设=(01),则=(0,4,2),=(1,22),|cos,|=,N为PD的中点,使得直线CN与平面PAC所成的角的正弦值为【点评】本题考查线面平行的判定,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题14如图,四棱锥PABCD的底面ABCD为平行四边形,平面PAB平面ABCD,PB=PC,ABC=45,点E是线段PA上靠近点A的三等分点()求证:ABPC;()若PAB是边长为2的等边三角形,求直线DE与平面PBC所成角的正弦值【分析】()作POAB于O,连接OC,可得PO面ABCD由POBPOC,ABC=45,得OCAB,即得AB面POC,可证得ABPC()以O 为原点建立空间坐标系,利用向量求解【解答】解:()作POAB于O,连接OC,平面PAB平面ABCD,且面PAB面ABCD=AB,PO面ABCD(2分)PB=PC,POBPOC,OB=OC,又ABC=45,OCAB又POCO=O,由,得AB面POC,又PC面POC,ABPC(6分)()PAB是边长为2的等边三角形,如图建立空间坐标系,设面PBC的法向量为,由,令,得;,设DE与面PBC所成角为,直线DE与平面PBC所成角的正弦值(12分)【点评】本题考查了空间线线垂直的判定,向量法求线面角,属于中档题15在三棱柱ABCA1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AAl,A1B1上,且AE=,A1F=,CEEF,M为AB中点( I)证明:EF平面CME;()若CACB,求直线AC1与平面CEF所成角的正弦值【分析】()推导出RtEAMRtFA1E,从而EFME,又EFCE,由此能证明EF平面CEM()设线段A1B1中点为N,连结MN,推导出MC,MA,MN两两垂直,建空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值【解答】证明:()在正方形ABB1A1中,A1E=,AM=1,在RtEAM和RtFA1E中,又EAM=FA1E=,RtEAMRtFA1E,AEM=A1FE,EFEM,又EFCE,MECE=E,EF平面CEM解:()在等腰三角形CAB中,CACB,AB=2,CA=CB=,且CM=1,设线段A1B1中点为N,连结MN,由()可证CM平面ABB1A1,MC,MA,MN两两垂直,建立如图所示的空间直角坐标系,则C(1,0,0),E(0,1,),F(0,2),A(0,1,0),C1(1,0,2),=(1,1,),=(0,),=(1,1,2),设平面CEF的法向量为=(x,y,z),则,取z=2,得=(5,4,2),设直线AC1与平面CEF所成角为,则sin=,直线AC1与平面CEF所成角的正弦值为【点评】本题考查线面垂直的证明,考查线面角的正弦值求法,是中档题,解题时要认真审题,注意空间思维能力的培养
收藏
编号:2616399
类型:共享资源
大小:805.03KB
格式:DOC
上传时间:2020-04-24
8
金币
- 关 键 词:
-
空间
向量
及其
立体几何
练习
进步
试题
以及
规范
标准答案
解析
- 资源描述:
-
-!
1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;
(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;
(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.
【解答】(1)证明:如图,设AC∩BD=O,
∵ABCD为正方形,∴O为BD的中点,连接OM,
∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,
∴PD∥OM,则,即M为PB的中点;
(2)解:取AD中点G,
∵PA=PD,∴PG⊥AD,
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,
由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.
以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,
由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),
,.
设平面PBD的一个法向量为,
则由,得,取z=,得.
取平面PAD的一个法向量为.
∴cos<>==.
∴二面角B﹣PD﹣A的大小为60;
(3)解:,平面BDP的一个法向量为.
∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.
【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.
2.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.
【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;
(Ⅱ)由PA⊥底面ABC,∠BAC=90.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;
(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长.
【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,
∵M为AD中点,∴MF∥BD,
∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.
∵N为BC中点,∴NF∥AC,
又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.
∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.
又MF∩NF=F.
∴平面MFN∥平面BDE,则MN∥平面BDE;
(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90.
∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.
∵PA=AC=4,AB=2,
∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),
则,,
设平面MEN的一个法向量为,
由,得,取z=2,得.
由图可得平面CME的一个法向量为.
∴cos<>=.
∴二面角C﹣EM﹣N的余弦值为,则正弦值为;
(Ⅲ)解:设AH=t,则H(0,0,t),,.
∵直线NH与直线BE所成角的余弦值为,
∴|cos<>|=||=||=.
解得:t=或t=.
∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.
【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.
3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点.
(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.
【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120求得∠CBP=30;
(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.
法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.
【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,
∴BE⊥平面ABP,又BP⊂平面ABP,
∴BE⊥BP,又∠EBC=120,
因此∠CBP=30;
(Ⅱ)解法一、
取的中点H,连接EH,GH,CH,
∵∠EBC=120,∴四边形BECH为菱形,
∴AE=GE=AC=GC=.
取AG中点M,连接EM,CM,EC,
则EM⊥AG,CM⊥AG,
∴∠EMC为所求二面角的平面角.
又AM=1,∴EM=CM=.
在△BEC中,由于∠EBC=120,
由余弦定理得:EC2=22+22﹣222cos120=12,
∴,因此△EMC为等边三角形,
故所求的角为60.
解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.
由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),
故,,.
设为平面AEG的一个法向量,
由,得,取z1=2,得;
设为平面ACG的一个法向量,
由,可得,取z2=﹣2,得.
∴cos<>=.
∴二面角E﹣AG﹣C的大小为60.
【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.
4.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60.
(Ⅰ)证明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E﹣BC﹣A的余弦值.
【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;
(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.
【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.
∵∠AFD=90,∴AF⊥DF,
∵DF∩EF=F,
∴AF⊥平面EFDC,
∵AF⊂平面ABEF,
∴平面ABEF⊥平面EFDC;
(Ⅱ)解:由AF⊥DF,AF⊥EF,
可得∠DFE为二面角D﹣AF﹣E的平面角;
由ABEF为正方形,AF⊥平面EFDC,
∵BE⊥EF,
∴BE⊥平面EFDC
即有CE⊥BE,
可得∠CEF为二面角C﹣BE﹣F的平面角.
可得∠DFE=∠CEF=60.
∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,
∴AB∥平面EFDC,
∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,
∴AB∥CD,
∴CD∥EF,
∴四边形EFDC为等腰梯形.
以E为原点,建立如图所示的坐标系,设FD=a,
则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),
∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)
设平面BEC的法向量为=(x1,y1,z1),则,
则,取=(,0,﹣1).
设平面ABC的法向量为=(x2,y2,z2),则,
则,取=(0,,4).
设二面角E﹣BC﹣A的大小为θ,则cosθ=
==﹣,
则二面角E﹣BC﹣A的余弦值为﹣.
【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.
5.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.
(Ⅰ)证明:D′H⊥平面ABCD;
(Ⅱ)求二面角B﹣D′A﹣C的正弦值.
【分析】(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;
(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面角B﹣D′A﹣C的正弦值可求.
【解答】(Ⅰ)证明:∵ABCD是菱形,
∴AD=DC,又AE=CF=,
∴,则EF∥AC,
又由ABCD是菱形,得AC⊥BD,则EF⊥BD,
∴EF⊥DH,则EF⊥D′H,
∵AC=6,
∴AO=3,
又AB=5,AO⊥OB,
∴OB=4,
∴OH==1,则DH=D′H=3,
∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,
又OH∩EF=H,
∴D′H⊥平面ABCD;
(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,
∵AB=5,AC=6,
∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,﹣3,0),
,,
设平面ABD′的一个法向量为,
由,得,取x=3,得y=﹣4,z=5.
∴.
同理可求得平面AD′C的一个法向量,
设二面角二面角B﹣D′A﹣C的平面角为θ,
则|cosθ|=.
∴二面角B﹣D′A﹣C的正弦值为sinθ=.
【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.
6.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
【分析】(I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;
(II)以C为原点建立空间直角坐标系,求出和平面CEF的法向量,则直线AC1与平面CEF所成角的正弦值等于|cos<>|.
【解答】证明:(I)取AB的中点D,连结CD,DF,DE.
∵AC=BC,D是AB的中点,∴CD⊥AB.
∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.
∴A1E=,EF==,DE==,
DF==,
∴EF2+DE2=DF2,∴DE⊥EF,
又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,
∴EF⊥平面CDE,又CD⊂平面CDE,
∴CD⊥EF,
又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,
∴CD⊥平面ABB1A1,又CD⊂ABC,
∴平面ABB1A1⊥平面ABC.
(II)∵平面ABB1A1⊥平面ABC,
∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.
∵CA⊥CB,AB=2,∴AC=BC=.
以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:
则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).
∴=(﹣,0,2),=(,0,),=(,,2).
设平面CEF的法向量为=(x,y,z),则,
∴,令z=4,得=(﹣,﹣9,4).
∴=10,||=6,||=.
∴sin<>==.
∴直线AC1与平面CEF所成角的正弦值为.
【点评】本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题.
7.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.
【分析】(1)利用直角梯形的性质求出AB,AC的长,根据勾股定理的逆定理得出AB⊥AC,由PA⊥平面ABCD得出AB⊥PA,故AB⊥平面PAC,于是AB⊥PC;
(2)假设存在点M,做出二面角的平面角,根据勾股定理求出M到平面ABCD的距离从而确定M的位置,利用棱锥的体积求出B到平面MAC的距离h,根据勾股定理计算BM,则即为所求角的正弦值.
【解答】解:(1)证明:∵四边形ABCD是直角梯形,
AD=CD=2,BC=4,
∴AC=4,AB===4,
∴△ABC是等腰直角三角形,即AB⊥AC,
∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB,
∴AB⊥平面PAC,又PC⊂平面PAC,
∴AB⊥PC.
(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA,
∴MN⊥平面ABCD,∴MN⊥AC.
过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG,
∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.
若∠MGN=45,则NG=MN,又AN=NG=MN,
∴MN=1,即M是线段PD的中点.
∴存在点M使得二面角M﹣AC﹣D的大小为45.
在三棱锥M﹣ABC中,VM﹣ABC=S△ABC•MN==,
设点B到平面MAC的距离是h,则VB﹣MAC=,
∵MG=MN=,∴S△MAC===2,
∴=,解得h=2.
在△ABN中,AB=4,AN=,∠BAN=135,∴BN==,
∴BM==3,
∴BM与平面MAC所成角的正弦值为=.
【点评】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.
8.如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60.
(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;
(2)已知点D满足=+,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.
【分析】(1)推导出A1O⊥平面ABC,BO⊥AC,以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,利用向量法能求出侧棱AA1与平面AB1C所成角的正弦值.
(2)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),则.利用向量法能求出存在点P,使DP∥平面AB1C,其坐标为(0,0,),即恰好为A1点.
【解答】解:(1)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,
∴A1O⊥平面ABC.
又∠ABC=∠A1AC=60,且各棱长都相等,
∴AO=1,OA1=OB=,BO⊥AC.…(2分)
故以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,
则A(0,﹣1,0),B(,0,0),A1(0,0,),C(0,1,0),
∴=(0,1,),=(),=(0,2,0).…(4分)
设平面AB1C的法向量为,
则,取x=1,得=(1,0,1).
设侧棱AA1与平面AB1C所成角的为θ,
则sinθ=|cos<,>|=||=,
∴侧棱AA1与平面AB1C所成角的正弦值为.…(6分)
(2)∵=,而,,
∴=(﹣2,0,0),又∵B(),∴点D(﹣,0,0).
假设存在点P符合题意,则点P的坐标可设为P(0,y,z),∴.
∵DP∥平面AB1C,=(﹣1,0,1)为平面AB1C的法向量,
∴由=λ,得,∴y=0.…(10分)
又DP⊄平面AB1C,故存在点P,使DP∥平面AB1C,其坐标为(0,0,),
即恰好为A1点.…(12分)
【点评】本题考查线面角的正弦值的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.
9.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1.
(Ⅰ)证明:平面AB1C⊥平面BCD;
(Ⅱ)若OC=OA,△AB1C的重心为G,求直线GD与平面ABC所成角的正弦值.
【分析】(Ⅰ)通过证明AB1⊥BD,AB1⊥CO,推出AB1⊥平面BCD,然后证明平面AB1C⊥平面BCD.
(Ⅱ)以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz.求出平面ABC的法向量,设直线GD与平面ABC所成角α,利用空间向量的数量积求解直线GD与平面ABC所成角的正弦值即可.
【解答】(本小题满分12分)
解:(Ⅰ)∵ABB1A1为矩形,AB=2,,D是AA1的中点,∴∠BAD=90,,,
从而,,∵,∴∠ABD=∠AB1B,…(2分)
∴,∴,从而AB1⊥BD…(4分)
∵CO⊥平面ABB1A1,AB1⊂平面ABB1A1,∴AB1⊥CO,∵BD∩CO=O,∴AB1⊥平面BCD,
∵AB1⊂平面AB1C,
∴平面AB1C⊥平面BCD…(6分)
(Ⅱ)如图,以O为坐标原点,
分别以OD,OB1,OC所在直线为x,y,z轴,
建立如图所示的空间直角坐标系O﹣xyz.
在矩形ABB1A1中,由于AD∥BB1,所以△AOD和△B1OB相似,
从而
又,∴,,,,∴,,∵G为△AB1C的重心,∴,…(8分)
设平面ABC的法向量为,,
由可得,
令y=1,则z=﹣1,,所以.…(10分)
设直线GD与平面ABC所成角α,则=,
所以直线GD与平面ABC所成角的正弦值为…(12分)
【点评】本题考查平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.
10.在矩形ABCD中,AB=4,AD=2,将△ABD沿BD折起,使得点A折起至A′,设二面角A′﹣BD﹣C的大小为θ.
(1)当θ=90时,求A′C的长;
(2)当cosθ=时,求BC与平面A′BD所成角的正弦值.
【分析】(1)过A作BD的垂线交BD于E,交DC于F,连接CE,利用勾股定理及余弦定理计算AE,CE,由A′E⊥CE得出A′C;
(2)利用余弦定理可得A′F=,从而得出A′F⊥平面ABCD,以F为原点建立坐标系,求出和平面A′BD的法向量,则BC与平面A′BD所成角的正弦值为|cos<>|.
【解答】解:(1)在图1中,过A作BD的垂线交BD于E,交DC于F,连接CE.
∵AB=4,AD=2,∴BD==10.
∴,BE==8,cos∠CBE==.
在△BCE中,由余弦定理得CE==2.
∵θ=90,∴A′E⊥平面ABCD,∴A′E⊥CE.
∴|A′C|==2.
(2)DE==2.
∵tan∠FDE=,∴EF=1,DF==.
当即cos∠A′EF=时,.
∴A′E2=A′F2+EF2,∴∠AFE=90
又BD⊥AE,BD⊥EF,∴BD⊥平面AEF,∴BD⊥AF
∴AF⊥平面ABCD.
以F为原点,以FC为x轴,以过F的AD的平行线为y轴,以FA′为z轴建立空间直角坐标系如图所示:
∴A′(0,0,),D(﹣,0,0),B(3,2,0),C(3,0,0).
∴=(0,2,0),=(4,2,0),=(,0,).
设平面A′BD的法向量为=(x,y,z),则,
∴,令z=1得=(﹣,2,1).
∴cos<>===.
∴BC与平面ABD所成角的正弦值为.
【点评】本题考查了空间角与空间距离的计算,空间向量的应用,属于中档题.
11.如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.
(Ⅰ)求证:AC⊥DC1;
(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;
(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.
【分析】(Ⅰ)证明AC⊥CC1,得到AC⊥平面CC1D,即可证明AC⊥DC1.
(Ⅱ)易得∠BAC=90,建立空间直角坐标系A﹣xyz,
依据已知条件可得A(0,0,0),,,B(0,0,1),B1(2,0,1),,
利用向量求得AM与平面DBB1所成角为0,即AM∥平面DBB1.
(Ⅲ)利用向量求解
【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1,
由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1,
所以AC⊥平面CC1D,
又C1D⊂平面CC1D,所以AC⊥DC1.
(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,
所以AA1⊥AB,AA1⊥AC,
又∠BAC=90,所以,如图建立空间直角坐标系A﹣xyz,
依据已知条件可得A(0,0,0),,,B(0,0,1),B1(2,0,1),,
所以,,
设平面DBB1的法向量为,
由即
令y=1,则,x=0,于是,
因为M为DC1中点,所以,所以,
由,可得,
所以AM与平面DBB1所成角为0,
即AM∥平面DBB1.
(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为.
设,λ∈[0,1],
则,.
若直线DP与平面DBB1成角为,则,
解得,
故不存在这样的点.
【点评】本题考查了空间线线垂直、线面平行的判定,向量法求二面角.属于中档题
12.如图,在多面体ABCDEF中,底面ABCD为正方形,平面AED⊥平面ABCD,AB=EA=ED,EF∥BD
( I)证明:AE⊥CD
( II)在棱ED上是否存在点M,使得直线AM与平面EFBD所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.
【分析】(I)利用面面垂直的性质得出CD⊥平面AED,故而AE⊥CD;
(II)取AD的中点O,连接EO,以O为原点建立坐标系,设,求出平面BDEF的法向量,令|cos<>|=,根据方程的解得出结论.
【解答】(I)证明:∵四边形ABCD是正方形,∴CD⊥AD,
又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,CD⊂平面ABCD,
∴CD⊥平面AED,∵AE⊂平面AED,
∴AE⊥CD.
(II)解:取AD的中点O,过O作ON∥AB交BC于N,连接EO,
∵EA=ED,∴OE⊥AD,又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,OE⊂平面AED,
∴OE⊥平面ABCD,
以O为原点建立空间直角坐标系O﹣xyz,如图所示:
设正方形ACD的边长为2,,
则A(1,0,0),B(1,2,0),D(﹣1,0,0),E(0,0,1),M(﹣λ,0,1﹣λ)
∴=(﹣λ﹣1,0,1﹣λ),=(1,0,1),=(2,2,0),
设平面BDEF的法向量为=(x,y,z),
则,即,令x=1得=(1,﹣1,﹣1),
∴cos<>==,
令||=,解得λ=0,
∴当M与点E重合时,直线AM与平面EFBD所成角的正弦值为.
【点评】本题考查了线面垂直的判定,空间向量与线面角的计算,属于中档题.
13.如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90,∠BAC=∠CAD=60,PA⊥平面ABCD,PA=2,AB=1.
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为?若存在,试确定点N的位置,若不存在,请说明理由.
【分析】(1)取AD中点M,利用三角形的中位线证明EM∥平面PAB,利用同位角相等证明MC∥AB,得到平面EMC∥平面PAB,证得EC∥平面PAB;
(2)建立坐标系,求出平面PAC的法向量,利用直线CN与平面PAC所成的角θ的正弦值为,可得结论.
【解答】(1)证明:取AD中点M,连EM,CM,则EM∥PA.
∵EM⊄平面PAB,PA⊂平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60,AC=AM=2,∴∠ACM=60.
而∠BAC=60,∴MC∥AB.
∵MC⊄平面PAB,AB⊂平面PAB,∴MC∥平面PAB.
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC⊂平面EMC,∴EC∥平面PAB.
(2)解:过A作AF⊥AD,交BC于F,建立如图所示的坐标系,则A(0,0,0),B(,﹣,0),C(,1,0),D(0,4,0),P(0,0,2),
设平面PAC的法向量为=(x,y,z),则,取=(,﹣3,0),
设=λ(0≤λ≤1),则=(0,4λ,﹣2λ),=(﹣λ﹣1,2﹣2λ),
∴|cos<,>|==,∴,
∴N为PD的中点,使得直线CN与平面PAC所成的角θ的正弦值为.
【点评】本题考查线面平行的判定,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
14.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,平面PAB⊥平面ABCD,PB=PC,∠ABC=45,点E是线段PA上靠近点A的三等分点.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)若△PAB是边长为2的等边三角形,求直线DE与平面PBC所成角的正弦值.
【分析】(Ⅰ)作PO⊥AB于O,连接OC,可得PO⊥面ABCD.由△POB≌△POC,∠ABC=45,得OC⊥AB,即得AB⊥面POC,可证得AB⊥PC.
(Ⅱ)以O 为原点建立空间坐标系,,利用向量求解.
【解答】解:(Ⅰ)作PO⊥AB于O…①,连接OC,
∵平面PAB⊥平面ABCD,且面PAB∩面ABCD=AB,∴PO⊥面ABCD.…(2分)
∵PB=PC,∴△POB≌△POC,∴OB=OC,
又∵∠ABC=45,∴OC⊥AB…②
又PO∩CO=O,由①②,得AB⊥面POC,又PC⊂面POC,∴AB⊥PC.…(6分)
(Ⅱ)∵△PAB是边长为2的等边三角形,∴.
如图建立空间坐标系,
设面PBC的法向量为,
,由,令,得;
,.
,
设DE与面PBC所成角为θ,
∴直线DE与平面PBC所成角的正弦值.…(12分)
【点评】本题考查了空间线线垂直的判定,向量法求线面角,属于中档题.
15.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AAl,A1B1上,且AE=,A1F=,CE⊥EF,M为AB中点
( I)证明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
【分析】(Ⅰ)推导出Rt△EAM∽Rt△FA1E,从而EF⊥ME,又EF⊥CE,由此能证明EF⊥平面CEM.
(Ⅱ)设线段A1B1中点为N,连结MN,推导出MC,MA,MN两两垂直,建空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值.
【解答】证明:(Ⅰ)在正方形ABB1A1中,A1E=,AM=1,
在Rt△EAM和Rt△FA1E中,,
又∠EAM=∠FA1E=,∴Rt△EAM∽Rt△FA1E,
∴∠AEM=∠A1FE,∴EF⊥EM,
又EF⊥CE,ME∩CE=E,∴EF⊥平面CEM.
解:(Ⅱ)在等腰三角形△CAB中,
∵CA⊥CB,AB=2,∴CA=CB=,且CM=1,
设线段A1B1中点为N,连结MN,由(Ⅰ)可证CM⊥平面ABB1A1,
∴MC,MA,MN两两垂直,
建立如图所示的空间直角坐标系,
则C(1,0,0),E(0,1,),F(0,,2),A(0,1,0),C1(1,0,2),
=(﹣1,1,),=(0,﹣,),=(1,﹣1,2),
设平面CEF的法向量为=(x,y,z),
则,取z=2,得=(5,4,2),
设直线AC1与平面CEF所成角为θ,
则sinθ==,
∴直线AC1与平面CEF所成角的正弦值为.
【点评】本题考查线面垂直的证明,考查线面角的正弦值求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。