2017-2018学年高中数学人教B版选修2-3教学案:2.2.1 条件概率 .doc
《2017-2018学年高中数学人教B版选修2-3教学案:2.2.1 条件概率 .doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学人教B版选修2-3教学案:2.2.1 条件概率 .doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2条件概率与事件的独立性22.1条件概率 100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格令A产品的长度合格,B产品的质量合格,AB产品的长度、质量都合格问题1:试求P(A)、P(B)、P(AB)提示:P(A),P(B),P(AB).问题2:任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率提示:事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B).问题3:试探求P(B)、P(AB)、P(A|B)间的关系提示:P(A|B).条件概率的概念(1)事件的交事件A和B同时发生所构成的事
2、件D,称为事件A与B的交(或积)记做DAB(或DAB)(2)条件概率对于两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率用符号“P(B|A)”表示即条件概率公式P(B|A),P(A)0.1事件B发生在“事件A已发生”这个附加条件下的概率通常情况下与没有这个附加条件的概率是不同的2由条件概率的定义可知,P(B|A)与P(A|B)是不同的另外,在事件A发生的前提下,事件B发生的概率不一定是P(B),即P(B|A)与P(B)不一定相等3P(B|A)可变形为P(AB)P(B|A)P(A),即只要知道其中的两个值就可以求得第三个值4事件AB表示事件A和事件B同时发生把事件A与事件B
3、同时发生所构成的事件D称为事件A与B的交(或积),记为DAB(或DAB) 条件概率的计算例1在5道题中有3道理科题和2道文科题如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率思路点拨根据分步乘法计数原理先计算出事件总数,然后计算出各种情况下的事件数后即可求解精解详析设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道题的基本事件总数为A20.事件A所含基本事件的总数为AA12.故P(A).(2)因为事件AB含
4、A6个基本事件所以P(AB).(3)法一由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P(B|A).法二因为事件AB含6个基本事件,事件A含12个基本事件,所以P(B|A).一点通计算条件概率的两种方法:(1)在缩小后的样本空间A中计算事件B发生的概率,即P(B|A);(2)在原样本空间中,先计算P(AB),P(A),再按公式P(B|A)计算求得P(B|A)1(新课标全国卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A0.8B0.75C0.6 D0.
5、45解析:根据条件概率公式P(B|A),可得所求概率为0.8.答案:A2某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为_解析:设事件A为“周日值班”,事件B为“周六值班”,则P(A),P(AB),故P(B|A).答案:3一个盒子中有6只正品晶体管,4只次品晶体管,任取两次,每次取一只,第一次取后不放回,若已知第一只是正品,求第二只也是正品的概率解:令Ai第i只是正品,i1,2.P(A1),P(A1A2),P(A2|A1).条件概率的应用例2(10分)将外形相同的球分装三个盒子,每盒10个其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017-2018学年高中数学人教B版选修2-3教学案:2.2.1 条件概率 2017 2018 学年 高中数 学人 选修 教学 2.2 条件 概率
限制150内