2019届高考数学(北师大版文)大一轮复习讲义:第八章 立体几何与空间向量 第2讲 简单几何体的表面积与体积.2 .doc
《2019届高考数学(北师大版文)大一轮复习讲义:第八章 立体几何与空间向量 第2讲 简单几何体的表面积与体积.2 .doc》由会员分享,可在线阅读,更多相关《2019届高考数学(北师大版文)大一轮复习讲义:第八章 立体几何与空间向量 第2讲 简单几何体的表面积与体积.2 .doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.2简单几何体的面积与体积最新考纲考情考向分析了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.本部分是高考考查的重点内容,主要涉及简单几何体的面积与体积的计算命题形式以选择题与填空题为主,考查简单几何体的面积与体积的计算,涉及简单几何体的结构特征、三视图等内容,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想.1多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和2圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l3.柱、锥、台、球的表面
2、积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3知识拓展1与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差(2)底面面积及高都相等的两个同类几何体的体积相等2几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2Ra;若球为正方体的内切球,则2Ra;若球与正方体的各棱相切,则2Ra.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R.(3)正四面体的外接球与内切球的半径之比为31.
3、题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)多面体的表面积等于各个面的面积之和()(2)锥体的体积等于底面积与高之积()(3)球的体积之比等于半径比的平方()(4)简单组合体的体积等于组成它的简单几何体体积的和或差()(5)长方体既有外接球又有内切球()(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2S.()题组二教材改编2已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为()A1 cm B2 cm C3 cm D. cm答案B解析S表r2rlr2r2r3r212,r24,r2.3.如图,将一个长方体用过相邻三条棱的中
4、点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为_答案147解析设长方体的相邻三条棱长分别为a,b,c,它截出棱锥的体积V1abcabc,剩下的几何体的体积V2abcabcabc,所以V1V2147.题组三易错自纠4(2017西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为()A3 B4C24 D34答案D解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示表面积为222121243.5(2016全国)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A12 B. C8 D4答案A解析由题意可知正方体的棱长为2,其体对角线2即为球的直径,所以球的表面积为
5、4R2(2R)212,故选A.6(2018大连调研)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为_答案11解析由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V圆锥23,V半球23,所以V剩余V半球V圆锥,故剩余部分与挖去部分的体积之比为11.题型一求简单几何体的表面积1(2018届云南昆明一中摸底)一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中主视图、左视图和俯视图均为边长等于2的正方形,则这个几何体的表面积为()A164B164C204D204答案D解析由三视图可知,该几何体是棱长为2的正方体的内部挖去一个底面边长为2的正四棱锥,
6、将三视图还原可得如图,可得其表面积为S52242204,故选D.2(2017黑龙江哈师大附中一模)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C13 D.答案C解析由三视图可知几何体为三棱台,作出直观图如图所示则CC平面ABC,上、下底均为等腰直角三角形,ACBC,ACBC1,ACBCCC2,AB,AB2.棱台的上底面面积为11,下底面面积为222,梯形ACCA的面积为(12)23,梯形BCCB的面积为(12)23,过A作ADAC于点D,过D作DEAB,则ADCC2,DE为ABC斜边高的,DE,AE,梯形ABBA的面积为(2),几何体的表面积S23313,故选C.思维升华简单
7、几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用题型二求简单几何体的体积命题点1以三视图为背景的几何体的体积典例 (2018届广雅中学、东华中学、河南名校联考)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B88C.D.答案A解析根据三视图可知,几何体是个球与一个直三棱锥的组合体,球的半径为2,三棱锥底面是等腰直角三角形,面积为S224,高为2,所以三棱锥的体积V42
8、,故组合体的体积V23,故选A.命题点2求简单几何体的体积典例 (2018广州调研)已知E,F分别是棱长为a的正方体ABCDA1B1C1D1的棱AA1,CC1的中点,则四棱锥C1B1EDF的体积为_答案a3解析方法一如图所示,连接A1C1,B1D1交于点O1,连接B1D,EF,过点O1作O1HB1D于点H.因为EFA1C1,且A1C1平面B1EDF,EF?平面B1EDF,所以A1C1平面B1EDF.所以C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离易知平面B1D1D平面B1EDF,又平面B1D1D平面B1EDFB1D,所以O1H平面B1EDF,所以O1H等于四棱锥C1B1EDF的
9、高因为B1O1HB1DD1,所以O1Ha.所以S四边形BEDFO1HEFB1DO1Haaaa3.方法二连接EF,B1D.设B1到平面C1EF的距离为h1,D到平面C1EF的距离为h2,则h1h2B1D1a.由题意得,V四棱锥CBEDFV三棱锥BCEFV三棱锥DCEF(h1h2)a3.思维升华简单几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解跟踪训练
10、 (1)(2018届河南洛阳联考)一个几何体的三视图如图所示,则该几何体的体积为()A2 B1C.D.答案C解析几何体如图,由三视图得底面为对角线为2的正方形,高为1,所以体积为2121,故选C.(2)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF2,则该多面体的体积为()A. B. C. D.答案A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EGHF,AGGDBHHC,取AD的中点O,连接GO,易得GO,SAGDSBHC1,多面体的体积VV三棱锥EADGV三棱锥FBCHV三棱柱AGDBHC2V三棱
11、锥EADGV三棱柱AGDBHC21.故选A.题型三与球有关的切、接问题典例 (2016全国)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球若ABBC,AB6,BC8,AA13,则V的最大值是()A4 B.C6 D.答案B解析由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为.引申探究1若将本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若AB3,AC4,ABAC,AA112,求球O的表面积解将直三棱柱补形为长方体ABECA1B1E1C1,则球O是长方体ABECA1B1E1C1的外接球体对角线BC1的长为球O的直径因此2R1
12、3.故S球4R2169.2若将本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积解如图,设球心为O,半径为r,则在RtAOF中,(4r)2()2r2,解得r,则球O的体积V球r33.思维升华简单几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PAa,PBb,PCc,一般把有关元素“补形”成为一个球内接长方体,利用4R2a2b2c2求解跟踪
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019届高考数学北师大版文大一轮复习讲义:第八章立体几何与空间向量 第2讲简单几何体的表面积与体积.2 2019 高考 数学 北师大 一轮 复习 讲义 第八 立体几何 空间 向量 简单 几何体
链接地址:https://www.taowenge.com/p-2616944.html
限制150内