2018版高中数学人教B版选修2-2学案:1章末复习课 .docx
《2018版高中数学人教B版选修2-2学案:1章末复习课 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版选修2-2学案:1章末复习课 .docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、题型一导数与曲线的切线利用导数求切线方程时关键是找到切点,若切点未知需设出常见的类型有两种,一类是求“在某点处的切线方程”,则此点一定为切点,易求斜率进而写出直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),由f(x1)和y1f(x1)求出x1,y1的值,转化为第一种类型例1已知函数f(x)exax(a为常数)的图象与y轴交于点A,曲线yf(x)在点A处的切线斜率为1.(1)求a的值及函数f(x)的极值;(2)证明:当x0时,x2ex.(1)解由f(x)exax,得f(x)exa.又f(0)1a1,得a2.所以f(x)ex2x,f(x)e
2、x2.令f(x)0,得xln 2.当xln 2时,f(x)ln 2时,f(x)0,f(x)单调递增所以当xln 2时,f(x)取得极小值,且极小值f(ln 2)eln 22ln 22ln 4,f(x)无极大值(2)证明令g(x)exx2,则g(x)ex2x.由(1)得g(x)f(x)f(ln 2)0.故g(x)在R上单调递增,又g(0)10,因此,当x0时,g(x)g(0)0,即x2ex.跟踪训练1已知函数f(x)ax22ln(2x)(aR),设曲线yf(x)在点(1,f(1)处的切线为l,若l与圆C:x2y2相切,求a的值解依题意有:f(1)a,f(x)2ax(x0,解集在定义域内的部分为增
3、区间;(4)解不等式f(x)0,解得x2,又x(0,),函数的单调增区间为(2,),函数的单调减区间为(0,2)(2)函数f(x)x(xa)2x32ax2a2x的定义域为R,由f(x)3x24axa20,得x1,x2a.当a0时,x1x2.函数f(x)的单调递增区间为(,),(a,),单调递减区间为(,a)当ax2,函数f(x)的单调递增区间为(,a),(,),单调递减区间为(a,)当a0时,f(x)3x20,函数f(x)的单调递增区间为(,),即f(x)在R上是单调递增的综上,a0时,函数f(x)的单调递增区间为(,),(a,),单调递减区间为(,a);a0,解得2kx2k(kZ),当x0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学人教B版选修2-2学案:1章末复习课 2018 高中 学人 选修 复习
限制150内