2019届高考数学大一轮复习讲义:第六章 数列 第3讲 等比数列及其前n项和.3 .doc
《2019届高考数学大一轮复习讲义:第六章 数列 第3讲 等比数列及其前n项和.3 .doc》由会员分享,可在线阅读,更多相关《2019届高考数学大一轮复习讲义:第六章 数列 第3讲 等比数列及其前n项和.3 .doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.3等比数列及其前n项和最新考纲考情考向分析1.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题3.了解等比数列与指数函数的关系.以考查等比数列的通项、前n项和及性质为主,等比数列的证明也是考查的热点本节内容在高考中既可以以选择题、填空题的形式进行考查,也可以以解答题的形式进行考查解答题往往与等差数列、数列求和、不等式等问题综合考查.1等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母q表示(q0)2等比数列的通项
2、公式设等比数列an的首项为a1,公比为q,则它的通项ana1qn1(a10,q0)3等比中项如果在a与b中插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,G2ab,G,称G为a,b的等比中项4等比数列的常用性质(1)通项公式的推广:anamqnm(n,mN)(2)若an为等比数列,且klmn(k,l,m,nN),则akalaman.(3)若an,bn(项数相同)是等比数列,则an(0),a,anbn,仍是等比数列5等比数列的前n项和公式等比数列an的公比为q(q0),其前n项和为Sn,当q1时,Snna1;当q1时,Sn.6等比数列前n项和的性质公比不为1的等比数列an的前n项
3、和为Sn,则Sn,S2nSn,S3nS2n仍成等比数列,其公比为qn.知识拓展等比数列an的单调性(1)满足或时,an是递增数列(2)满足或时,an是递减数列(3)当时,an为常数列(4)当q0,b22,.5设Sn为等比数列an的前n项和,8a2a50,则_.答案11解析设等比数列an的公比为q,8a2a50,8a1qa1q40.q380,q2,11.6一种专门占据内存的计算机病毒开机时占据内存1 KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机_分钟,该病毒占据内存64 MB(1 MB210 KB)答案48解析由题意可知,病毒每复制一次所占内存的大小构成一等比数列an,且
4、a12,q2,an2n,则2n64210216,n16.即病毒共复制了16次所需时间为16348(分钟).题型一等比数列基本量的运算1(2018开封质检)已知等比数列an满足a1,a3a54(a41),则a2等于()A2 B1 C. D.答案C解析由an为等比数列,得a3a5a,又a3a54(a41),所以a4(a41),解得a42.设等比数列an的公比为q,则由a4a1q3,得2q3,解得q2,所以a2a1q.故选C.2(2018届河北衡水中学二调)设正项等比数列an的前n项和为Sn,且1,若a3a520,a3a564,则S4等于()A63或120 B256C120 D63答案C解析由题意得
5、解得或又1,所以数列an为递减数列,故设等比数列an的公比为q,则q2,因为数列为正项数列,故q,从而a164,所以S4120.故选C.思维升华等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解题型二等比数列的判定与证明典例 (2018潍坊质检)设数列an的前n项和为Sn,已知a11,Sn14an2.(1)设bnan12an,证明:数列bn是等比数列;(2)求数列an的通项公式(1)证明由a11及Sn14an2,得a1a2S24a12.a25,b1a22a13.又由,得an14an4an1(n2),an12a
6、n2(an2an1)(n2)bnan12an,bn2bn1(n2),故bn是首项b13,公比为2的等比数列(2)解由(1)知bnan12an32n1,故是首项为,公差为的等差数列(n1),故an(3n1)2n2.引申探究若将本例中“Sn14an2”改为“Sn12Sn(n1)”,其他不变,求数列an的通项公式解由已知得n2时,Sn2Sn1n.Sn1Sn2Sn2Sn11,an12an1,an112(an1),n2,(*)又a11,S2a1a22a12,即a212(a11),当n1时(*)式也成立,故an1是以2为首项,以2为公比的等比数列,an122n12n,an2n1.思维升华 (1)证明一个数
7、列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可(2)利用递推关系时要注意对n1时的情况进行验证跟踪训练(2016全国)已知数列an的前n项和Sn1an,其中0.(1)证明an是等比数列,并求其通项公式;(2)若S5,求.(1)证明由题意得a1S11a1,故1,a1,a10.由Sn1an,Sn11an1,得an1an1an,即an1(1)an,由a10,0得an0,所以.因此an是首项为,公比为的等比数列,于是ann1.(2)解由(1)得Sn1n.由S5得15,即5.解得1.题型三等比数列性质的应用1已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019届高考数学大一轮复习讲义:第六章数列 第3讲等比数列及其前n项和.3 2019 高考 数学 一轮 复习 讲义 第六 数列 等比数列 及其
限制150内