立体几何几个经典编辑题型(理科)(推荐).doc
-!立体几何1、如图,在四棱锥中,平面,平分,为的中点,(1)证明:平面(2)证明:平面(3)求直线与平面所成角的正切值2、(本题满分15分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,的中点, (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离3、如图,在五面体ABCDEF中,FA 平面ABCD, AD/BC/FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD (I) 求异面直线BF与DE所成的角的大小;(II) 求平面AMD与平面CDE所成角的大小;(III)求二面角A-CD-E的余弦值。 4.如图,在正三棱柱(底面是正三角形,侧棱垂直底面)中,D是的中点,点E在上,且。(I) 证明平面平面(II) 求直线和平面所成角的正弦值。 BECADP5在四棱锥PABCD中, 底面ABCD为矩形,侧棱PA底面ABCD,AB,BC1,PA2,E为PD的中点(1) 在侧面PAB内找一点N,使NE面PAC,并求出N点到AB和AP的距离; (2) 求(1) 中的点N到平面PAC的距离 6、如图,在棱长为1的正方体中,是侧棱上的一点,。()、试确定,使直线与平面所成角的正切值为;()、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。7、如图所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积(1)求的表达式;(2)当为何值时,取得最大值?(3)当取得最大值时,求异面直线与所成角的余弦值8、 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。 ()求证:; ()若SD平面PAC,求二面角的大小;()在()的条件下,侧棱SC上是否存在一点E, 使得BE平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。答案:立体几何与空间向量解答题(理科)1、【解】 证明:设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又有题设,E为PC的中点,故,又,所以.(2)证明:因为,所以由(1)知,,故(3)解:由可知,BH为BC在平面PBD内的射影,所以为直线与平面PBD所成的角。由,在中,,所以直线BC与平面PBD所成的角的正切值为。2、证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,. 则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为3、分析:本小题要考查异面直线所成的角、平面与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想像能力、运算能力和推理论证能力。【解】方法一:()解:由题设知,BF/CE,所以CED(或其补角)为异面直线BF与DE所成的角。设P为AD的中点,连结EP,PC。因为FEAP,所以FAEP,同理ABPC。又FA平面ABCD,所以EP平面ABCD。而PC,AD都在平面ABCD内,故EPPC,EPAD。由ABAD,可得PCAD设FA=a,则EP=PC=PD=a,CD=DE=EC=,故CED=。所以异面直线BF与DE所成的角的大小为60。 (II)因为故平面AMD与平面CDE所成角的大小为.(III)由(I)可得, 方法二:如图所示,建立空间直角坐标系,点为坐标原点。设依题意得 (I) 所以异面直线与所成的角的大小为.(II)证明: , (III) 又由题设,平面的一个法向量为 【点评】纯几何方法求角:求角的思路一般是将空间角的计算问题转化为平面角的计算问题,求异面直线所成的角时,需要选点平移,一般是设法在其中一条直线 上选出一个恰当的点来平移另一条直线,然后计算其中的锐角或直角;线面角的计算关键是找出直线在平面上的射影,通常需要由直线上的某一点向平面作垂线,求出的应当是一个锐角或直角;面面角的计算通常找到平面角或面积射影定理来完成,找平面角的方法有定义法、三垂线定理法(利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。)、垂面法,计算出来的角是可以是锐角、直角或钝角.向量法求角给解题带来了极大的方便,其规律见后面的【温馨提示】。4、【解】(I) 如图所示,由正三棱柱的性质知平面,又DE平面ABC,所以DEAA.而DEAE。AAAE=A 所以DE平面AC CA,又DE平面ADE,故平面ADE平面AC CA。(2)解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设A A=,则AB=2,相关各点的坐标分别是A(0,-1,0), B(,0,0), C(0,1,), D(,-,)。易知=(,1,0), =(0,2,), =(,-,) 设平面ABC的法向量为,则有,解得x=-y, z=-,故可取n=(1,-,)。所以,=。由此即知,直线AD和平面AB C所成角的正弦值为。【点评】本题主要考查面与面之间的关系和线面关系,同时考查空间想象能力和推理运算能力。本题着眼于让学生掌握通性通法几何法在书写上体现:“作出来、证出来、指出来、算出来、答出来”五步斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面内的射影。因此求直线和平面所成的角,几何法一般先定斜足、再作垂线找射影、通过解直角三角形求解;向量法则利用斜线和射影的夹角或考虑法向量,用公式计算=直线,P面,是与平面所成的角,是平面的法向量,有)6、【解】(1) 建立空间直角坐标系ABDP,则A、B、C、D、P、E的坐标分别是A(0, 0, 0)、B(, 0, 0)、C(, 1, 0)、D(0, 1, 0)、P(0, 0, 2)、E(0, , 1),依题设N(x, 0, z),则(x, , 1z),由于NE平面PAC, 即,即点N的坐标为(, 0, 1),从而N到AB、AP的距离分别为1,.(2) 设N到平面的距离为,是平面的法向量,则d.例9如图,在棱长为1的正方体中,是侧棱上的一点,。()、试确定,使直线与平面所成角的正切值为;()、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。【分析】本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。9、【解】法1:()连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为PC平面,平面平面APCOG,故OGPC,所以,OGPC.又AOBD,AOBB1,所以AO平面,故AGO是AP与平面所成的角.在RtAOG中,tanAGO,即m.所以,当m时,直线AP与平面所成的角的正切值为.()可以推测,点Q应当是AICI的中点O1,因为D1O1A1C1, 且 D1O1A1A ,所以 D1O1平面ACC1A1,又AP平面ACC1A1,故 D1O1AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。例10如图所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积(1)求的表达式;(2)当为何值时,取得最大值?(3)当取得最大值时,求异面直线与所成角的余弦值10、【解】(1)由折起的过程可知,PE平面ABC,();(2),所以时, ,V(x)单调递增;时 ,V(x)单调递减;因此x=6时,V(x)取得最大值;(3)过F作MF/AC交AD与M,则,PM=,在PFM中, ,异面直线AC与PF所成角的余弦值为;【点评】本题采用了函数思想在立体几何中的应用。例11 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。 ()求证:; ()若SD平面PAC,求二面角的大小;()在()的条件下,侧棱SC上是否存在一点E, 使得BE平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。11、【解】法一: ()连BD,设AC交BD于O,由题意。在正方形ABCD中,所以,得. ()设正方形边长,则。又,所以, 连,由()知,所以, 且,所以是二面角的平面角。由,知,所以,即二面角的大小为。 ()在棱SC上存在一点E,使由()可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.解法二:();连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。 设底面边长为,则高。于是 , 故,从而 ()由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为()在棱上存在一点使.由()知是平面的一个法向量,且 设 则而 ,即当时, 而不在平面内,故。【点评】解决存在性问题一般是两种思路,一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或计算如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,则说明其不存在。
收藏
- 资源描述:
-
-!
立体几何
1、如图,在四棱锥中,平面,,平分,为的中点,
(1)证明:平面
(2)证明:平面
(3)求直线与平面所成角的正切值
2、(本题满分15分)如图,平面平面,
是以为斜边的等腰直角三角形,分别为,
,的中点,,.
(I)设是的中点,证明:平面;
(II)证明:在内存在一点,使平面,并求点到,的距离.
3、如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD
(I) 求异面直线BF与DE所成的角的大小;
(II) 求平面AMD与平面CDE所成角的大小;
(III)求二面角A-CD-E的余弦值。
4.如图,在正三棱柱(底面是正三角形,侧棱垂直底面)中,,D是的中点,点E在上,且。
(I) 证明平面平面
(II) 求直线和平面所成角的正弦值。
B
E
C
A
D
P
5在四棱锥P-ABCD中, 底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.
(1) 在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离;
(2) 求(1) 中的点N到平面PAC的距离.
6、如图,在棱长为1的正方体中,是侧棱上的一点,。
(Ⅰ)、试确定,使直线与平面所成角的正切值为;
(Ⅱ)、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。
7、如图所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
(3)当取得最大值时,求异面直线与所成角的余弦值.
8、 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。
(Ⅰ)求证:;
(Ⅱ)若SD⊥平面PAC,求二面角的大小;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
答案:
立体几何与空间向量解答题(理科)
1、【解】 证明:设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又有题设,E为PC的中点,故,又
,所以.
(2)证明:因为,,所以
由(1)知,,故
(3)解:由可知,BH为BC在平面PBD内的射影,所以为直线与平面PBD所成的角。
由,
在中,,所以直线BC与平面PBD所成的角的正切值为。
2、证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,. 则
,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面
(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.
3、分析:本小题要考查异面直线所成的角、平面与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想像能力、运算能力和推理论证能力。
【解】方法一:(Ⅰ)解:由题设知,BF//CE,所以∠CED(或其补角)为异面直线BF与DE所成的角。设P为AD的中点,连结EP,PC。因为FEAP,所以FAEP,同理ABPC。又FA⊥平面ABCD,所以EP⊥平面ABCD。而PC,AD都在平面ABCD内,故EP⊥PC,EP⊥AD。由AB⊥AD,可得PC⊥AD设FA=a,则EP=PC=PD=a,CD=DE=EC=,故∠CED=。所以异面直线BF与DE所成的角的大小为60。
(II)因为
故平面AMD与平面CDE所成角的大小为.
(III)
由(I)可得,
方法二:如图所示,建立空间直角坐标系,
点为坐标原点。设依题意得
(I)
所以异面直线与所成的角的大小为.
(II)证明: ,
(III)
又由题设,平面的一个法向量为
【点评】纯几何方法求角:求角的思路一般是将空间角的计算问题转化为平面角的计算问题,求异面直线所成的角时,需要选点平移,一般是设法在其中一条直线 上选出一个恰当的点来平移另一条直线,然后计算其中的锐角或直角;线面角的计算关键是找出直线在平面上的射影,通常需要由直线上的某一点向平面作垂线,求出的应当是一个锐角或直角;面面角的计算通常找到平面角或面积射影定理来完成,找平面角的方法有定义法、三垂线定理法(利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。)、垂面法,计算出来的角是可以是锐角、直角或钝角.向量法求角给解题带来了极大的方便,其规律见后面的【温馨提示】。
4、【解】(I) 如图所示,由正三棱柱的性质知平面,又DE平面ABC,所以DEAA.
而DEAE。AAAE=A 所以DE平面AC CA,又DE平面ADE,故平面ADE平面AC CA。
(2)
解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设
A A=,则AB=2,相关各点的坐标分别是
A(0,-1,0), B(,0,0), C(0,1,), D(,-,)。
易知=(,1,0), =(0,2,), =(,-,)
设平面ABC的法向量为,则有
,解得x=-y, z=-,
故可取n=(1,-,)。
所以,===。
由此即知,直线AD和平面AB C所成角的正弦值为。
【点评】本题主要考查面与面之间的关系和线面关系,同时考查空间想象能力和推理运算能力。本题着眼于让学生掌握通性通法几何法在书写上体现:“作出来、证出来、指出来、算出来、答出来”五步斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面内的射影。因此求直线和平面所成的角,几何法一般先定斜足、再作垂线找射影、通过解直角三角形求解;向量法则利用斜线和射影的夹角或考虑法向量,用公式计算=直线,P面,是与平面所成的角,是平面的法向量,有)
6、【解】(1) 建立空间直角坐标系A-BDP,则A、B、C、D、P、E的坐标分别是A(0, 0, 0)、B(, 0, 0)、C(, 1, 0)、D(0, 1, 0)、P(0, 0, 2)、E(0, , 1),依题设N(x, 0, z),则=(-x, , 1-z),由于NE⊥平面PAC,
∴
即
,即点N的坐标为(, 0, 1),
从而N到AB、AP的距离分别为1,.
(2) 设N到平面的距离为,是平面的法向量,则d=
=.
〖例9〗如图,在棱长为1的正方体中,是侧棱上的一点,。
(Ⅰ)、试确定,使直线与平面所成角的正切值为;
(Ⅱ)、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。
【分析】本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。
9、【解】法1:(Ⅰ)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为PC∥平面,平面∩平面APC=OG,
故OG∥PC,所以,OG=PC=.
又AO⊥BD,AO⊥BB1,所以AO⊥平面,
故∠AGO是AP与平面所成的角.
在Rt△AOG中,tanAGO=,即m=.
所以,当m=时,直线AP与平面所成的角的正切值为.
(Ⅱ)可以推测,点Q应当是AICI的中点O1,因为
D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,
又AP平面ACC1A1,故 D1O1⊥AP.
那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。
〖例10〗如图所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
(3)当取得最大值时,求异面直线与所成角的余弦值.
10、【解】(1)由折起的过程可知,PE⊥平面ABC,,
();
(2),所以时, ,V(x)单调递增;时 ,V(x)单调递减;因此x=6时,V(x)取得最大值;
(3)过F作MF//AC交AD与M,则,PM=,
,
在△PFM中, ,∴异面直线AC与PF所成角的余弦值为;
【点评】本题采用了函数思想在立体几何中的应用。
〖例11〗 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。
(Ⅰ)求证:;
(Ⅱ)若SD⊥平面PAC,求二面角的大小;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
11、【解】法一:
(Ⅰ)连BD,设AC交BD于O,由题意。在正方形ABCD中,,所以,得.
(Ⅱ)设正方形边长,则。
又,所以,
连,由(Ⅰ)知,所以,
且,所以是二面角的平面角。
由,知,所以,
即二面角的大小为。
(Ⅲ)在棱SC上存在一点E,使
由(Ⅱ)可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.
解法二:(Ⅰ);连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。
设底面边长为,则高。
于是 ,
故,从而
(Ⅱ)由题设知,平面的一个法向量,平面的一个法向量,
设所求二面角为,则,所求二面角的大小为
(Ⅲ)在棱上存在一点使.由(Ⅱ)知是平面的一个法向量,且
设 则
而 ,即当时,
而不在平面内,故。
【点评】解决存在性问题一般是两种思路,一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或计算如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,则说明其不存在。
展开阅读全文