2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.3 .docx
《2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.3 .docx》由会员分享,可在线阅读,更多相关《2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.3 .docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2.3直线与平面平行的性质学习目标1.掌握直线与平面平行的性质定理,明确由线面平行可推出线线平行.2.结合具体问题体会化归与转化的数学思想知识点直线与平面平行的性质思考1如图,直线l平面,直线a平面,直线l与直线a一定平行吗?为什么?答案不一定,因为还可能是异面直线思考2如图,直线a平面,直线a平面,平面平面直线b,满足以上条件的平面有多少个?直线a,b有什么位置关系?答案无数个ab.梳理线面平行的性质文字语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a,a,bab图形语言类型一线面平行的性质定理的应用例1如图,用平行于四面体ABCD的一组对棱AB,C
2、D的平面截此四面体,求证:截面MNPQ是平行四边形证明因为AB平面MNPQ,平面ABC平面MNPQMN,且AB平面ABC,所以由线面平行的性质定理,知ABMN.同理ABPQ,所以MNPQ.同理可得MQNP.所以截面MNPQ是平行四边形引申探究1若本例条件不变,求证:.证明由例1知:PQAB,.又QMDC,.2若本例中添加条件:ABCD,AB10,CD8,且BPPD11,求四边形MNPQ的面积解由例1知,四边形MNPQ是平行四边形,ABCD,PQQM,四边形MNPQ是矩形又BPPD11,PQ5,QM4,四边形MNPQ的面积为5420.反思与感悟(1)利用线面平行的性质定理解题的步骤(2)运用线面
3、平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与这个平面相交的交线,然后确定线线平行跟踪训练1如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上,若EF平面AB1C,则线段FE的长度等于_答案解析EF平面AB1C,又平面ADC平面AB1CAC,EF平面ADC,EFAC,E是AD的中点,EFAC2.类型二线面平行性质定理与判定定理的综合应用例2如图所示,已知P是ABCD所在平面外一点,M,N分别是AB,PC的中点,平面PBC平面PADl.(1)求证:lBC;(2)MN与平面PAD是否平行?试证明你的结论证明(1)因为BCAD,BC平面PAD,AD平面PAD
4、,所以BC平面PAD.又因为平面PBC平面PADl,所以BCl.解(2)平行证明如下:如图,取PD的中点E,连接AE,NE,可以证得NEAM且NEAM,所以四边形MNEA是平行四边形,所以MNAE.又AE平面PAD,MN平面PAD,所以MN平面PAD.反思与感悟判定定理与性质定理常常交替使用,即先通过线线平行推出线面平行,再通过线面平行推出线线平行,复杂的题目还可以继续推下去,我们可称它为平行链,如下:线线平行线面平行线线平行跟踪训练2如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH平面PAD.证明
5、如图所示,连接AC交BD于点O,连接MO.四边形ABCD是平行四边形,O是AC的中点,又M是PC的中点,PAMO,而AP平面BDM,OM平面BDM,PA平面BMD,又PA平面PAHG,平面PAHG平面BMDGH,PAGH.又PA平面PAD,GH平面PAD,GH平面PAD.1梯形ABCD中,ABCD,AB平面,CD平面,则直线CD与平面内的直线的位置关系只能是()A平行 B平行或异面C平行或相交 D异面或相交答案B解析CD,直线CD与平面内的直线的位置关系是平行或异面2直线a平面,内有n条直线交于一点,则这n条直线中与直线a平行的直线有()A0条 B1条C0条或1条 D无数条答案C解析过直线a与
6、交点作平面,设平面与交于直线b,则ab,若所给n条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a平行的直线有0条3如图,在长方体ABCDA1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H,则GH与AB的位置关系是()A平行 B相交C异面 D平行或异面答案A解析由长方体性质知:EF平面ABCD,EF平面EFGH,平面EFGH平面ABCDGH,EFGH.又EFAB,GHAB.4.如图所示,直线a平面,A,并且a和A位于平面两侧,点B,Ca,AB,AC分别交平面于点E,F,若BC4,CF5,AF3,则EF_.答案解析由于
7、点A不在直线a上,则直线a和点A确定一个平面,所以EF.因为a平面,a平面,所以EFa.所以.所以EF.5.如图,AB是圆O的直径 ,点C是圆O上异于A,B的点,P为平面ABC外一点,E,F分别是PA,PC的中点记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明解直线l平面PAC.证明如下:因为E,F分别是PA,PC的中点,所以EFAC.又EF平面ABC,且AC平面ABC,所以EF平面ABC.而EF平面BEF,且平面BEF平面ABCl,所以EFl.因为l平面PAC,EF平面PAC,所以l平面PAC.1在遇到线面平行时,常需作出过已知直线与已知平面相交的辅助平面,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.3 2018 版人教 高中数学 必修 同步 学习 讲义 第二 直线 平面 之间 位置 关系 2.2
链接地址:https://www.taowenge.com/p-2618027.html
限制150内