2018届高三二轮复习数学(文)(人教版)阶段提升突破练:(五) .doc
《2018届高三二轮复习数学(文)(人教版)阶段提升突破练:(五) .doc》由会员分享,可在线阅读,更多相关《2018届高三二轮复习数学(文)(人教版)阶段提升突破练:(五) .doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。阶段提升突破练(五)(解析几何)(60分钟100分)一、选择题(每小题5分,共40分)1.(2017资阳二模)双曲线E:-=1(a0,b0)的一个焦点F到E的渐近线的距离为a,则E的离心率是()A.B.C.2D.3【解题导引】由点到直线的距离公式计算可得焦点F到渐近线的距离为b=a,进而由双曲线离心率公式计算可得答案.【解析】选C.根据题意,双曲线E:-=1的焦点在x轴上,则其渐近线方程为y=x,即aybx=0,设F(c,0),F到渐近线ay-bx=0的距离d=b,又由双
2、曲线E:-=1的一个焦点F到E的渐近线的距离为a,则b=a,c=2a,故双曲线的离心率e=2.【加固训练】若双曲线x2-y2=2右支上一点(s,t)到直线y=x的距离为2,则s-t的值等于()A.2B.2C.-2D.-2【解析】选B.因为双曲线x2-y2=2右支上一点(s,t)到直线y=x的距离为2,所以d=2,所以|s-t|=2.又P点在右支上,则有st,所以s-t=2.2.(2017昆明二模)已知抛物线x2=4y的焦点为F,准线为l,抛物线的对称轴与准线交于点Q,P为抛物线上的动点,|PF|=m|PQ|,当m最小时,点P恰好在以F,Q为焦点的椭圆上,则椭圆的离心率为()A.3-2B.2-C
3、.-D.-1【解析】选D.由已知,F(0,1),Q(0,-1),过点P作PM垂直于准线,则PM=PF.记PQM=,则m=sin,当最小时,m有最小值,此时直线PQ与抛物线相切于点P,设P,可得P(2,1),所以|PQ|=2,|PF|=2,则|PF|+|PQ|=2a,所以a=+1,c=1,所以e=-1.3.已知直线l:kx+y-2=0(kR)是圆C:x2+y2-6x+2y+9=0的对称轴,过点A(0,k)作圆C的一条切线,切点为B,则线段AB的长为()A.2B.2C.3D.2【解题导引】利用配方法求出圆的标准方程可得圆心和半径,由直线l:kx+y-2=0经过圆C的圆心(3,-1),求得k的值,可
4、得点A的坐标,再利用直线和圆相切的性质求得AB的长.【解析】选D.由圆C:x2+y2-6x+2y+9=0得,(x-3)2+(y+1)2=1,表示以C(3,-1)为圆心、半径等于1的圆.由题意可得,直线l:kx+y-2=0经过圆C的圆心(3,-1),故有3k-1-2=0,得k=1,则点A(0,1),即|AC|=.则线段|AB|=2.4.(2017深圳二模)已知双曲线-=1(a0,b0)的左、右顶点分别为A1,A2,M是双曲线上异于A1,A2的任意一点,直线MA1和MA2分别与y轴交于P,Q两点,O为坐标原点,若|OP|,|OM|,|OQ|依次成等比数列,则双曲线的离心率的取值范围是()A.(,+
5、)B.,+)C.(1,)D.(1,【解析】选A.由题意得A1(-a,0),A2(a,0),而M是双曲线上的点,令M(m,n),求得直线MA2:y=(x-a),MA1:y=(x+a),所以Q,P;而|OP|,|OM|,|OQ|依次成等比数列,所以|OP|OQ|=|OM|2,即=m2+n2;而-=1;联立解得a2=,c2=;所以离心率e=;经验证,n=0时,不满足题意,所以双曲线的离心率e.即双曲线的离心率的取值范围是(,+).5.(2017长沙二模)与圆x2+(y-2)2=2相切,且在两坐标轴上截距相等的直线有()A.6条B.4条C.3条D.2条【解题导引】可设两坐标轴上截距相等(在坐标轴上截距
6、不为0)的直线方程为x+y=a,与圆的方程x2+(y-2)2=4联立,利用=0即可求得a的值,从而可求得直线方程;另外需要考虑坐标轴上截距都为0的情况.【解析】选C.设两坐标轴上截距相等(在坐标轴上截距不为0)的直线l的方程为x+y=a,则由题意得:来源:学科网消去y得:2x2+(4-2a)x+a2-4a+2=0,因为l与圆x2+(y-2)2=2相切,所以=(4-2a)2-42(a2-4a+2)=0,解得a=0(舍去)或a=4,所以l的方程为x+y=4;当坐标轴上截距都为0时,由图可知y=x与y=-x与该圆相切.共有3条满足题意的直线.6.(2017武汉一模)点M是抛物线x2=2py(p0)的
7、对称轴与准线的交点,点F为抛物线的焦点,P在抛物线上,在PFM中,sinPFM=sinPMF,则的最大值为()A.B.1C.D.【解题导引】由正弦定理求得|PM|=|PF|,作PB垂直于准线于点B,根据抛物线的定义,则=,sin=,则取得最大值时,sin最小,此时直线PM与抛物线相切,将直线方程代入抛物线方程,=0,求得k的值,即可求得的最大值.【解析】选C.过P作准线的垂线,垂足为B,则由抛物线的定义可得|PF|=|PB|,由sinPFM=sinPMF,则PFM中由正弦定理可知:|PM|=|PF|,所以|PM|=|PB|,所以=,设PM的倾斜角为,则sin=,当取得最大值时,sin最小,此时
8、直线PM与抛物线相切,设直线PM的方程为y=kx-,则即x2-2pkx+p2=0,所以=4p2k2-4p2=0,所以k=1,即tan=1,则sin=,的最大值为=.【加固训练】已知抛物线y2=4x,圆F:(x-1)2+y2=1,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D(如图所示),则|AB|CD|的值正确的是()来源:Zxxk.ComA.等于1B.最小值是1C.等于4D.最大值是4【解析】选A.因为y2=4x,焦点F(1,0),准线l0:x=-1.由定义得:|AF|=xA+1,又因为|AF|=|AB|+1,所以|AB|=xA,同理:|CD|=xD,当lx轴时,则xD=xA=
9、1,所以|AB|CD|=1,当l:y=k(x-1)时,代入抛物线方程,得:k2x2-(2k2+4)x+k2=0,所以xAxD=1,所以|AB|CD|=1.综上所述,|AB|CD|=1.7.(2017郴州二模)已知椭圆C的中心在原点,焦点在x轴上,离心率为,同时椭圆C上存在一点与右焦点关于直线x+y-1=0对称,则椭圆C的方程为()A.+=1B.+=1C.+=1D.+=1【解题导引】由椭圆的离心率,求得b=c,则椭圆的标准方程转化成x2+2y2=2b2,求得右焦点关于直线x+y-1=0对称的点,代入椭圆方程,即可求得b和a的值,求得椭圆方程.【解析】选A.由椭圆的离心率e=,则a=c,由b2=a
10、2-c2=c2,则b=c,则设椭圆方程为x2+2y2=2b2.设右焦点(b,0)关于l:y=-x+1的对称点设为(x,y),则解得由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=,a2=,所以椭圆的标准方程为+=1.8.过双曲线x2-=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为()世纪金榜导学号46854247A.10B.13C.16D.19【解析】选B.圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;圆C2:(x-4)2+y2=1的圆心为(4,0),半径
11、为r2=1,设双曲线x2-=1的左、右焦点为F1(-4,0),F2(4,0),连接PF1,PF2,F1M,F2N,可得|PM|2-|PN|2=(|PF1|2-)-(|PF2|2-)=(|PF1|2-4)-(|PF2|2-1)=|PF1|2-|PF2|2-3=(|PF1|-|PF2|)(|PF1|+|PF2|)-3=2a(|PF1|+|PF2|)-3=2(|PF1|+|PF2|)-322c-3=28-3=13.当且仅当P为右顶点时,取得等号,即最小值为13.二、填空题(每小题5分,共20分)9.(2017保定一模)已知等边ABC的两个顶点A(0,0),B(4,0),且第三个顶点在第四象限,则BC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018届高三二轮复习数学文人教版阶段提升突破练:五 2018 届高三 二轮 复习 数学 人教版 阶段 提升 突破
限制150内