2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第10章 计数原理、概率、随机变量及其分布 第9节 离散型随机变量的均值与方差学案 理 北师大版.doc
《2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第10章 计数原理、概率、随机变量及其分布 第9节 离散型随机变量的均值与方差学案 理 北师大版.doc》由会员分享,可在线阅读,更多相关《2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第10章 计数原理、概率、随机变量及其分布 第9节 离散型随机变量的均值与方差学案 理 北师大版.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九节离散型随机变量的均值与方差考纲传真(教师用书独具)1.理解取有限个值的离散型随机变量的均值、方差的概念.2.会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单实际问题(对应学生用书第189页)基础知识填充1离散型随机变量的均值与方差若离散型随机变量X的分布列为P(Xai)pi(i1,2,r)(1)均值EXa1p1a2p2arpr,均值EX刻画的是X取值的“中心位置”(2)方差DXE(XEX)2为随机变量X的方差,它刻画了随机变量X与其均值EX的平均偏离程度2均值与方差的性质(1)E(aXb)aEXB(2)D(aXb)a2DX(a,b为常数)3两点分布与
2、二项分布的均值、方差均值方差变量X服从两点分布EXpDXp(1p)XB(n,p)EXnpDXnp(1p)知识拓展EX反映了x取值的平均水平,DX反映了X针对EX的稳定与波动,集中与离散的程度区分、s2、2、EX、DX.基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)期望是算术平均数概念的推广,与概率无关()(2)随机变量的均值是常数,样本的平均值是随机变量()(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ()(4)在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运动员罚球命中的概率为0.7,
3、那么他罚球1次的得分X的均值是0.7.()答案(1)(2)(3)(4)2(教材改编)已知X的分布列为X101P设Y2X3,则EY的值为()AB4C1D1AEX101,则EY2EX33.3设随机变量的分布列为P(k)(k2,4,6,8,10),则D等于()A8B5C10D12AE(246810)6,D(4)2(2)20222428.4(2017全国卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX_.1.96由题意得XB(100,0.02),所以DX1000.02(10.02)1.96.5已知随机变量X服从二项分布B(n,p),若E
4、X30,DX20,则p_.由于XB(n,p),且EX30,DX20,所以解得p.(对应学生用书第190页)离散型随机变量的均值、方差(2017全国卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,
5、30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元)当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X200)0.2,P(X300)0.4,P(X500)0.4.因此X的分布列为X200300500P0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500瓶,至少为200瓶,因此只需考虑200n500.当300n500时,
6、若最高气温不低于25,则Y6n4n2n;若最高气温位于区间20,25),则Y63002(n300)4n1 2002n;若最高气温低于20,则Y62002(n200)4n8002n.因此EY2n0.4(1 2002n)0.4(8002n)0.26400.4n.当200n300时,若最高气温不低于20,则Y6n4n2n;若最高气温低于20,则Y62002(n200)4n8002n,因此EY2n(0.40.4)(8002n)0.21601.2n.所以n300时,Y的数学期望达到最大值,最大值为520元规律方法求离散型随机变量X的均值与方差的步骤(1)理解X的意义,写出X可能取的全部值.(2)求X取每
7、个值时的概率.(3)写出X的分布列.(4)由均值的定义求EX.(5)由方差的定义求DX.易错警示:注意E(aXb)aEXb,D(aXb)a2DX的应用.跟踪训练(2017青岛一模)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算)有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年高考数学一轮复习学案+训练+课件北师大版理科: 第10章 计数原理、概率、随机变量及其分布 第9节 离散型随机变量的均值与方差学案 北师大版 2019 年高 数学 一轮 复习 训练 课件
链接地址:https://www.taowenge.com/p-2621388.html
限制150内