2018届高三理科数学二轮复习讲义:模块二 专题五 高考解答题专讲(五) 圆锥曲线的综合应用 .doc
《2018届高三理科数学二轮复习讲义:模块二 专题五 高考解答题专讲(五) 圆锥曲线的综合应用 .doc》由会员分享,可在线阅读,更多相关《2018届高三理科数学二轮复习讲义:模块二 专题五 高考解答题专讲(五) 圆锥曲线的综合应用 .doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题五解析几何高考解答题专讲(五)圆锥曲线的综合应用一、圆锥曲线中的范围、最值问题解决有关范围、最值问题时,先要恰当地引入变量(如点的坐标、斜率等),建立目标函数,然后利用函数的有关知识和方法求解(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出参数的取值范围;(4)利用已知不等关系构造不等式,从而求出参数的取值范围;(5)利用函数值域的求法,确定参数的取值范围思维流程(1)(2)解(1)证明:因为|AD|AC|,EBAC,故EBDACDADC.所以|EB|ED|,
2、故|EA|EB|EA|ED|AD|.又圆A的标准方程为(x1)2y216,从而|AD|4,所以|EA|EB|4.由题设得A(1,0),B(1,0),|AB|2,由椭圆定义可得点E的轨迹方程为1(y0)(2)当l与x轴不垂直时,设l的方程为yk(x1)(k0),M(x1,y1),N(x2,y2)由得(4k23)x28k2x4k2120,则x1x2,x1x2,所以|MN|x1x2|.过点B(1,0)且与l垂直的直线m:y(x1),A到m的距离为,所以|PQ|24 .故四边形MPNQ的面积S|MN|PQ|12 .可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8)当l与x轴垂直时,其方
3、程为x1,|MN|3,|PQ|8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为12,8)解圆锥曲线范围、最值问题的要点求解范围或最值问题的关键是建立关于求解某个变量的目标函数,通过求这个函数的值域确定目标的范围 对点训练1(2017安徽皖西南十校期末联考)已知右焦点为F2(c,0)的椭圆C:1(ab0)过点,且椭圆C关于直线xc对称的图形过坐标原点(1)求椭圆C的方程;(2)过点作直线l与椭圆C交于E,F两点,线段EF的中点为M,点A是椭圆C的右顶点,求直线MA的斜率k的取值范围解(1)椭圆C过点,1,椭圆C关于直线xc对称的图形过坐标原点,a2c,a2b2c2,b2a2,
4、由得a24,b23,椭圆C的方程为1.(2)依题意,直线l过点且斜率不为零,故可设其方程为xmy.由方程组消去x,并整理得4(3m24)y212my450.设E(x1,y1),F(x2,y2),M(x0,y0)y1y2,y0,x0my0,k.当m0时,k0当m0时,k,4m8,0.0知,C不经过点P1,所以点P2在C上因此解得故C的方程为y21.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:xt,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则x1x2,x1x2.而k1k2,由题设k1k21,故(2k1)x1x2(m1)(x1x2)0.即(2k
5、1)(m1)0.解得k.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1)解答圆锥曲线的定值、定点问题应把握3点(1)从特殊情形开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标 对点训练2(2016北京卷)已知椭圆C:1(ab0)的离心率为,A(a,0),B(0,b),O(0,0),OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|BM|为定值解(1)由题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018届高三理科数学二轮复习讲义:模块二 专题五 高考解答题专讲五圆锥曲线的综合应用 2018 届高三 理科 数学 二轮 复习 讲义 模块 专题 高考 解答 题专讲 圆锥曲线 综合 应用
链接地址:https://www.taowenge.com/p-2622057.html
限制150内