2018版高中数学人教B版必修二学案:第一单元 疑难规律方法 .docx
《2018版高中数学人教B版必修二学案:第一单元 疑难规律方法 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修二学案:第一单元 疑难规律方法 .docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1学习空间几何体要“三会”一、会辨别例1下列说法:一个几何体有五个面,则该几何体可能是球、棱锥、棱台、棱柱;若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台;直角三角形绕其任意一条边旋转一周都可以围成圆锥其中说法正确的个数为_分析可根据柱体、锥体、台体和球体的概念进行判断解析一个几何体有五个面,可能是四棱锥、三棱台,也可能是三棱柱,但不可能是球,所以错;由于棱台的侧棱是原棱锥侧棱的一部分,所以棱台的各侧棱的延长线相交于一点,而中的几何体其侧棱延长线并不一定会交于一点,所以错;中如绕直角边旋转可以形成圆锥,但绕斜边旋转形成的是由两个圆锥组成的组合体,所以错故填0.答案0评注要准确辨别
2、各种几何体,可从轴、侧面、底面、母线、平行于底面的截面等方面入手,当然掌握定义是大前提二、会折展例2纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“”的面的方位是_分析将平面展开图按要求折叠成正方体,根据方位判断即可解析将平面展开图折叠成正方体,如图所示,标“”的面的方位应为北故填北答案北评注将空间几何体展开成平面图形,或将展开图折叠成空间几何体,在后面的计算或证明中经常用到,应引起重视解决这类问题的关键是充分发挥空间想象能力或亲自动手制作模型进行实践三、会割补例3如图所示是一个三棱台ABCA1B1C
3、1.试用一个平面把这个三棱台分成一个三棱柱和一个多面体,并用字母表示分析三棱柱要求两个底面为平行且全等的三角形,其余三个面为四边形,且相邻两个四边形的公共边都相互平行解作A1DBB1,C1EBB1,连接DE,则三棱柱为A1B1C1DBE,多面体为ADECC1A1(如图所示)评注正确理解各类几何体的概念是将几何体进行割补的前提,在后面的空间几何体的体积或面积计算中经常要通过线、面,将不规则的几何体通过割补的方法转化为规则的几何体,从而可以利用公式求解2三视图易错点剖析一、棱锥的视图易出错我们在画正三棱锥、正四棱锥时要注意从不同角度得到的三视图实际上,在上述几何体的三视图中,左视图最容易出错,在画
4、这些常见锥体的三视图时,可做出几何体的高线,有了高线的衬托,自然就可以得到正确的三视图如图,对于正三棱锥PABC来说,它的主视图中,从前面向后面看,点B到了点D的位置,点P到了点P的位置,故主视图为等腰三角形PAC(包含高线PD),从左侧向右侧看,点A到了点D的位置,故左视图为三角形PBD,从上面向下面看,俯视图中,点P到了点O的位置,故俯视图为等边三角形ABC(外加三条线段OA、OB、OC)如图,对于正四棱锥PABCD来说,它的主视图和左视图分别为等腰三角形PEF和等腰三角形PGH,俯视图为正方形ABCD(包含两条对角线AC和BD)对于此三视图,左视图和主视图易出错,但有了高线PO的衬托,便
5、可降低出错率二、画三视图时,没有把不可见的轮廓线用虚线表示而出错作几何体的三视图的过程中,可见的边界轮廓线用实线表示,不可见的边界轮廓线用虚线表示这一点不能忽视,否则易出错例1画出如图所示零件的三视图错解如图零件可看作是一个半圆柱、一个柱体、一个圆柱的组合,其三视图如图所示剖析错误原因是图中各视图都没有画出中间的柱体和圆柱的交线,画图时应画出其交线正解三、不能由三视图还原正确的直观图而出错当已知几何体的三视图,而需要我们去还原成直观图时,要充分关注图形中关键点的投影,重要的垂直关系等,综合三个视图,想象出直观图,然后画出直观图,再通过已知的三视图验证直观图的正确性例2如图,通过三视图还原物体的
6、直观图解通过三视图可以画出直观图,如图所示:注其中PC为垂直于底面ABCD的直线跟踪训练由下面的三视图还原物体的直观图解通过三视图可以看出直观图如图所示:3直观图与原图形的互化知多少在高考中常借助于求平面图或直观图的面积来考查斜二测画法中角度和长度的变化,也实现了原图形与直观图的互化关于两者的互化,关键是要抓住它们之间的转化规则“斜”和“二测”“斜”也即是直角坐标系到斜45坐标系之间的相互转化,“二测”也即是两者在转化时,要做到“水平长不变,垂直倍半化”现通过例题讲述一下两者之间的具体转化策略一、原图形到直观图的转化例1已知正三角形ABC的边长为a,那么ABC的平面直观图ABC的面积为()A.
7、a2 B.a2 C.a2 D.a2分析先根据题意,在原图形中建立平面直角坐标系(以AB所在直线为x轴,以AB边上的高所在直线为y轴),然后完成由原图形到直观图的转化,然后根据直观图ABC的边长及夹角求解解析根据题意,建立如图所示的平面直角坐标系,再按照斜二测画法画出其直观图,如图所示易知,ABABa,OCOCa.作CDAB于点D,则CDOCa.SABCABCDaaa2.答案D评注通过斜二测画法画出的平面图形的直观图的面积与实物图的面积之比为1.在求解中注意面积中的水平方向与垂直方向的选择与定位二、直观图到原图形的转化例2用斜二测画法画一个水平放置的平面图形,得到一个边长为1的正方体,则原来图形
8、的形状是()解析由直观图知,原图形在y轴上的对角线长应为2.答案A评注当由直观图向原图形转化时,关键是在直观图中建立斜45坐标系,有了斜45坐标系,便可按“二测”的画图规则逆推回去,而在正方形中建立45坐标系是很容易的(正方形的对角线与任一边所成的角均为45),从而实现了由直观图向原几何图形的转化例3如图所示,四边形ABCD是一平面图形水平放置的斜二测直观图,在斜二测直观图中,ABCD是一直角梯形,ABCD,ADCD,且BC与y轴平行,若AB6,DC4,AD2,则这个平面图形的实际面积是_分析由BCx45,先计算BC的长度解析由斜二测直观图画法规则知该平面图形是梯形,且AB与CD的长度不变,仍
9、为6和4,高为4,故平面图形的实际面积为(64)420.答案204柱、锥、台的表面积求法精析由于柱、锥、台的表面积是各个面的面积之和,因此计算的关键在于对几何体各个面的正确认识以及对表面积公式的正确运用一、锥体的表面积例1正三棱锥的底面边长为4 cm,它的侧棱与高所成的角为45,求正三棱锥的表面积分析本题的关键在于求正三棱锥的斜高解如图所示,过S点作SO平面ABC于O点,则O为ABC的中心,连接AO并延长与BC相交于D点由正三角形的性质得D为BC的中点,连接SD,则SD为正三棱锥的斜高在RtASO中,ASO45,AO4(cm),SOAO(cm)在RtSOD中,OD4(cm),故SD(cm)根据
10、正棱锥的侧面积公式:S侧344(cm2),又ABC的面积为4 cm2,故正三棱锥的表面积为(44) cm2.评注有关棱锥、棱台的表面积问题,常常涉及到侧棱、高、斜高、边心距和底面外接圆半径五个量之间的关系解决问题时,往往把它们转化为平面图形,即由侧棱、高、底面外接圆半径所组成的直角三角形或由高、斜高、边心距所组成的直角三角形,求出所需要的量,从而使问题得以解决二、柱体的表面积例2如图,已知直三棱柱ABCA1B1C1,其底面是等腰直角三角形,且ABBC,ACA1A2.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值解(1)该几何体有5个面,两个底面
11、的面积和为22,三个侧面面积和为2(2)4(1),故其表面积S64.(2)设两个这样的直三棱柱重合的面的面积为S1,则组合后的直棱柱的表面积为2S2S1,故当且仅当重合的面的面积最大时,拼得的棱柱的表面积最小又侧面AA1C1C的面积最大,此时拼得的棱柱的表面积最小值为2S2S四边形AA1C1C48.评注本例中(1)的关键在于准确识别几何体的各个面的形状;(2)的关键在于找到影响拼合后的面积变化量,当然也可以分类讨论,列举出各种拼合的办法,一一计算表面积,再进行比较三、台体的表面积例3已知一个正三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高分析求棱台的侧
12、面积要注意利用公式及正棱台中的特殊直角梯形,转化为平面问题来求解所需的几何元素解如图所示,正三棱台ABCA1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1中点,则DD1为棱台的斜高由A1B120 cm,AB30 cm,则O1D1 cm,OD5 cm,由S侧S上S下,得(2030)3DD1(202302),DD1 cm.棱台的斜高为 cm.在直角梯形O1ODD1中,O1O4(cm)棱台的高为4 cm.评注本题的关键是找到正棱台中的特殊直角梯形5空间几何体体积的求解“三法”空间几何体的体积公式在实际生活中有着广泛的应用,但在具体求解过程中,仅仅记住公式是远远不够的,还要把握图形
13、的内在因素,掌握一些常见的求解策略,灵活选择恰当的方法进行求解一、直接用公式求解根据柱体、锥体、台体、球体的体积公式,明确公式中各几何量的值,把未知的逐个求出,再代入公式进行求解例1已知圆锥的表面积为15 cm2,侧面展开图的圆心角为60,求该圆锥的体积分析根据锥体的体积公式VShr2h,知应分别求出圆锥的底面半径和高,代入公式计算解设圆锥的底面半径为r,高为h,母线长为l,根据题意可得解得所以hr5.所以V25(cm3)评注直接利用几何体的体积公式求体积时,需牢固掌握公式,明确各几何量之间的关系,准确进行计算二、分割补形求解当给出的几何体比较复杂,有关的计算公式无法运用时,可以采用“分割”或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学人教B版必修二学案:第一单元 疑难规律方法 2018 高中 学人 必修 二学案 第一 单元 疑难 规律 方法
限制150内