2018版高中数学人教B版必修四学案:第二单元 疑难规律方法 .docx
《2018版高中数学人教B版必修四学案:第二单元 疑难规律方法 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修四学案:第二单元 疑难规律方法 .docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面.一、化简例1 化简下列各式:(1)(2)(2);(2)3(2a8b)6(4a2b).解(1)(2)(2)22222()()2.(2)3(2a8b)6(4a2b)(6a24b24a12b)(18a36b)ab.点评向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式
2、出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a,b,c等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量.二、求参数例2 如图,已知ABC和点M满足0,若存在实数m使得m成立,则m_.解析如图,因为0,即(),即.延长AM,交BC于点D,所以点D是BC边的中点,所以2,所以,所以23,所以m3.答案3点评求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值.三、表示向量例3
3、如图所示,在ABC中,DEBC交AC于点E,BC边上的中线AM交DE于点N,设a,b,用向量a,b表示、.解因为DEBC,所以b,ba.由ADEABC,得(ba).又M是ABC底边BC的中点,DEBC,所以(ba),aa(ba)(ab).点评用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.2走出平面向量的误区平面向量的基本定理与坐标表示是向量问题的基础,试题的特点是概念较多,应用也多,不少同学由于概念、性质掌握不清,在解题时
4、经常出现错误,本文将常见的错误进行简单的总结,希望帮助同学们走出平面向量的误区.一、理解失误例1 已知e1、e2是平面内的一组基底,那么下列命题中正确的有_.(填序号)e1、e2两个向量可以共线,也可以是零向量;e1e2可以表示平面内的所有向量;对于平面内的任意向量a,使ae1e2的实数、有无数对.错解正解由平面向量的基本定理知,只有不共线的两个向量才能作为平面向量的一组基底,所以错误;任一平面向量都可以用一组基底线性表示,且基底确定,其表示是唯一的,所以正确,错误.故正确答案为.答案点评对平面向量基本定理的学习要把握以下几点:e1、e2是同一平面内的两个不共线向量;该平面内的任意向量a都可用
5、e1、e2线性表示,且这种表示是唯一的;对基底的选取不唯一,只要是同一平面内的两个不共线向量都可以作为一组基底.二、考虑不全例2 与向量d(12,5)平行的单位向量为()A.(,)B.(,)C.(,)或(,)D.(,)错解由题意得|d|13,则与d(12,5)平行的单位向量为(,),故选A.正解与d(12,5)平行的单位向量为(,)或(,).故选C.答案C点评与d平行的单位向量有同向和反向两种情况,错解忽略了反向的情况.三、概念混淆例3 已知A(2,4),B(3,1),C(3,4).设3,2,试求点M,N和向量的坐标.错解A(2,4),B(3,1),C(3,4),所以(23,44)(1,8),
6、(33,14)(6,3),3(3,24),2(12,6),所以点M(3,24),点N(12,6),(9,18).正解已知A(2,4),B(3,1),C(3,4).所以(23,44)(1,8),(33,14)(6,3),3(3,24),2(12,6).又C(3,4),所以点M(0,20),点N(9,2),所以(90,220)(9,18).点评向量的坐标与点的坐标是两个不同的概念,向量的坐标等于终点坐标减去起点坐标,只有当向量的起点在坐标原点处时,向量的坐标才与终点坐标相等.3平面向量的基本定理应用三技巧技巧一构造某一向量在同一基底下的两种不同的表达形式,用“若e1,e2为基底,且ax1e1y1e
7、2x2e1y2e2,则用”来求解.例1在OAB的边OA,OB上分别取点M,N,使|13,|14,设线段AN与BM交于点P,记a,b,用a,b表示向量.解B,P,M共线,存在常数s,使s,则.即,ab.同理,存在常数t,使t,则ab.a,b不共线,由得解得ab.点评这里选取,作为基底,构造在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.技巧二构造两个共线向量在同一基底下的表达形式,用“若e1,e2为基底,ax1e1y1e2,bx2e1y2e2,且ab,则x1y2x2y10”来求解.例2如图,在OAB中,AD与BC交于点M,设a,b.(1)用a、b表示;(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学人教B版必修四学案:第二单元 疑难规律方法 2018 高中 学人 必修 四学案 第二 单元 疑难 规律 方法
限制150内