2018年浙江高考数学二轮复习练习:仿真卷2 .doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018年浙江高考数学二轮复习练习:仿真卷2 .doc》由会员分享,可在线阅读,更多相关《2018年浙江高考数学二轮复习练习:仿真卷2 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2018年浙江高考仿真卷(二) (对应学生用书第167页)本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分,考试时间120分钟第卷一、选择题(本大题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知i是虚数单位,则()A1iB1iC1iD1iB1i,故选B.2已知集合Mx|x2x120,Ny|y3x,x1,则集合x|xM且xN为()A(0,3B4,3C4,0)D4,0D易得M4,3,N(0,3,则x|xM且xN4,0,故选D.3已知xR,则“|x3|x1|1,所以“|x3|x1|2”是“x1”的充分不必要条件故选A.4如图1,某多面体的正视图、
2、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为 ()图1A2B.C2D.C三视图对应的直观图为四棱锥,补形成正方体如图所示,由图可知最长棱的长度为2.5若(12x)5a0a1xa2x2a5x5,则a0a1a3a5()A122B123C243D244B记f(x)(12x)5,则a0f(0)1, 又f(1)a0a1a2a535,f(1)a0a1a2a5(1)51,两式相减得a1a3a5122,所以a0a1a3a5123,故选B.6设Sn是公差为d(d0)的无穷等差数列an的前n项和,则下列命题错误的是()A若d0,则数列Sn有最大项B若数列Sn
3、有最大项,则d0D若对任意nN*,均有Sn0,则数列Sn是递增数列C由于Snna1dn2n是关于n的二次函数,定义域为N*,所以当dSnan10,即若数列Sn是递增数列,则an0(n2),并不能说明a10也成立,如数列1,1,3,4,所以C不正确;对于D,显然a1S10,若公差d0,由Snn2n可知,存在nN*,有Sn0矛盾,所以d0,从而an0(nN*),所以数列Sn是递增数列,故D正确7已知O为三角形ABC内一点,且满足(1)0,若OAB的面积与OAC的面积的比值为,则的值为()A.B2C.D.A如图,设BC的中点为E,连接OE,直线AO与BC相交于点F,由(1)0,可知()()0,2,则
4、,因为OAB的面积与OAC的面积的比值为,所以BC4BF,又BC2BE,所以BE2BF,从而CF3EF,3,所以23,.8给定R上函数f(x),()A存在R上函数g(x),使得f(g(x)xB存在R上函数g(x),使得g(f(x)xC存在R上函数g(x),使得f(g(x)g(x)D存在R上函数g(x),使得f(g(x)g(f(x)D对于A,B:若f(x)1,则f(g(x)x,g(f(x)x均不成立,排除A,B;对于C:f(x)x1,则f(g(x)g(x)1g(x),排除C;当g(x)x时,f(g(x)f(x),同时g(f(x)f(x),即f(g(x)g(f(x),所以给定R上的函数f(x),一
5、定存在R上的函数g(x)x,使得f(g(x)g(f(x),故选D.9如图,有一个底面是正方形的直棱柱型容器(无盖),底面棱长为1 dm(dm为分米),高为5 dm,两个小孔在其相对的两条侧棱上,且到下底面距离分别为3 dm和4 dm,则(水不外漏情况下)此容器可装的水最多为()图2A. dm3B4 dm3C. dm3D3 dm3C由题意得当容器内的水的上表面过两孔连线所在的平面时,容器内装的水最多,又因为容器的底面为正方形,则由长方体的对称性易得当容器内的水的上表面平分以两孔连线所得的线段为体对角线的长方体时,容器内装的水最多,此时容器内装的水的体积为311111,故选C.10已知0xy,2x
6、2y,则下列不正确的是()Asin x2sin(2y)Csin(2x2)sin yDsin x2cos(y1)C易得x2xx2y,所以0x1.2,又可得2x2y1,又y,所以1y.由x2y得0x2y,所以sin x2sin,故A正确;由21.44x22y,所以sin x2sin(2y),故B正确;对于C,取2x2,则y,sin(2x2)sin y,显然不成立,所以C不正确;由x2y得0x2y1y,所以sin x20,所以q,从而ana3qn38n326n.13已知函数f(x)sin xcos xcos2x,xR,则函数f(x)的最小值为_,函数f(x)的递增区间为_2,kZf(x)sin xc
7、os xcos2xsin 2xsin1,易知f(x)min2,递增区间为,kZ.14将9个相同的小球放入3个不同的盒子,每个盒子中至少有1个小球,共有_种不同的方法若要求每个盒子中至少有1个小球,且每个盒子中的小球个数都不相同,则共有_种不同的方法2818(1)每个盒子非空,则共有C28种方法;(2)三个盒子中球的个数有以下三类:1,3,5;1,2,6;2,3,4.每一类都有A种不同的方法,所以根据分类计数原理,共有3A18种不同的方法15设maxa,b已知x,yR,mn6,则Fmax|x24ym|,|y22xn|的最小值为_Fmax|x24ym|,|y22xn|,当且仅当即且时,取“”,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018年浙江高考数学二轮复习练习:仿真卷2 2018 浙江 高考 数学 二轮 复习 练习 仿真
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内