2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型与几何概型 .doc
《2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型与几何概型 .doc》由会员分享,可在线阅读,更多相关《2018年高考数学(文)二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型与几何概型 .doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、突破点6古典概型与几何概型核心知识提炼提炼1 古典概型问题的求解技巧(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决.提炼2 几何度量法求解几何概型准确确定度量方
2、式和度量公式是求解几何概型的关键,常见的几何度量涉及的测度主要包括长度、面积、体积、角度等.提炼3 求概率的两种常用方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率(2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”它常用来求“至少”或“至多”型事件的概率高考真题回访回访1古典概型1(2017全国卷)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.BC.DD从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡
3、片上的数大于第二张卡片上的数的事件数为10,所求概率P.故选D.2(2016全国卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A. B. C. D.C从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄白紫、红白黄紫、红紫白黄、黄白红紫、黄紫红白、白紫红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄白紫、红白黄紫、黄紫红白、白紫红黄,共4种,故所求概率为P,故选C.3.(2014全国卷)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书
4、相邻的概率为_两本不同的数学书用a1,a2表示,语文书用b表示,则(a1,a2,b),(a1,b,a2),(a2,a1,b),(a2,b,a1),(b,a1,a2),(b,a2,a1)于是两本数学书相邻的情况有4种,故所求概率为.回访2几何概型4(2017全国卷)如图61,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()图61A. B.C. D.B不妨设正方形ABCD的边长为2,则正方形内切圆的半径为1,可得S正方形4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S黑S白S圆,
5、所以由几何概型知所求概率P.故选B.5(2016全国卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A. B. C. D.B如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯AB长度为401525,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为,故选B.热点题型1古典概型题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小【例1】(1)一个袋子中有5个大小相同的球,其中3个白球与2个黑球,先从袋中任意
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018年高考数学文二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型与几何概型 2018 年高 数学 二轮 复习 教师 部分 重点 强化 专题 突破点 古典 几何
链接地址:https://www.taowenge.com/p-2622752.html
限制150内