2017-2018学年高中数学苏教版选修2-3教学案:2.3.2 事件的独立性 .doc
《2017-2018学年高中数学苏教版选修2-3教学案:2.3.2 事件的独立性 .doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学苏教版选修2-3教学案:2.3.2 事件的独立性 .doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、23.2事件的独立性有这样一项活动:甲箱里装有3个白球,2个黑球,乙箱里装有2个白球,2个黑球,从这两个箱子里分别摸出1个球,记事件A“从甲箱里摸出白球”,B“从乙箱里摸出白球”问题1:事件A发生会影响事件B发生的概率吗?提示:不影响问题2:试求P(A),P(B)提示:P(A),P(B).问题3:P(A|B)与P(A)相等吗?提示:相等问题4:P(AB)为何值?提示:P(A|B)P(A),P(AB)P(A)P(B).事件的独立性概念一般地,若事件A,B满足P(A|B)P(A),则称事件A,B独立性质(1)若A,B独立,且P(A)0,则B,A也独立,即A与B相互独立(2)约定任何事件与必然事件独
2、立,任何事件与不可能事件独立,则两个事件A,B相互独立的充要条件是P(AB)P(A)P(B)概率计算公式(1)若事件A与B相互独立,则A与B同时发生的概率等于事件A发生的概率与事件B发生的概率之积,即P(AB)P(A)P(B)(2)推广:若事件A1,A2,An相互独立,则这n个事件同时发生的概率P(A1A2An)P(A1)P(A2)P(An)结论如果事件A与B相互独立,那么A与,与B,与也都相互独立.1事件A与B相互独立就是事件A(或B)是否发生不影响事件B(或A)发生的概率2相互独立事件同时发生的概率:P(AB)P(A)P(B),这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概
3、率的积相互独立事件的概念例1容器中盛有5个白乒乓球和3个黄乒乓球(1)“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”这两个事件是否相互独立?为什么?(2)“从8个球中任意取出1个,取出的是白球”与“把取出的1个白球放回容器,再从容器中任意取出1个,取出的是黄球”这两个事件是否相互独立?为什么?思路点拨从相互独立事件的定义入手判断精解详析(1)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;若前一事件没有发生,则后一事件发生的概率为.可见,前一事件是否发生,对后一事件发生的
4、概率有影响,所以二者不是相互独立事件(2)由于把取出的白球放回容器,故对“从中任意取出1个,取出的是黄球”的概率没有影响,所以二者是相互独立事件一点通解决此类问题常用的两种方法:(1)定量计算法:利用相互独立事件的定义(即P(AB)P(A)P(B)可以准确地判定两个事件是否相互独立(2)定性判断法:看一个事件的发生对另一个事件的发生是否有影响没有影响就是相互独立事件;有影响就不是相互独立事件1同时掷两颗质地均匀的骰子,A第一颗骰子出现奇数点,B第二颗骰子出现偶数点,判断事件A,B是否相互独立解:同时掷两颗质地均匀的骰子,则A第一颗骰子出现1,3,5点,共有3种结果B第二颗骰子出现2,4,6点,
5、共有3种结果AB第一颗骰子出现奇数点,第二颗骰子出现偶数点,共有CC9种结果由于每种结果的出现均是等可能的,由古典概型的有关知识可知P(A),P(B),P(AB).P(AB)P(A)P(B),即事件A、事件B相互独立2分别抛掷2枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”,问:A,B,C中哪两个相互独立?解:P(A)0.5,P(B)0.5,P(C)0.5,P(AB)0.25,P(BC)0.25,P(AC)0.25,可以验证:P(AB)P(A)P(B),P(BC)P(B)P(C),P(AC)P(A)P(C)事件A与B相互独立,事件B与C相互独立
6、,事件A与C相互独立求相互独立事件发生的概率例2制造一种零件,甲机床的正品率为0.90,乙机床的正品率为0.80,分别从它们制造的产品中任意抽取一件(1)两件都是正品的概率;(2)两件都是次品的概率;(3)恰有一件正品的概率思路点拨两件都是正品(次品)的概率,就是正品(次品)的概率相乘;恰有一件正品的概率要用到互斥事件精解详析记“从甲机床抽到正品”为事件A,“从乙机床抽到正品”为事件B,“抽取的两件产品中恰有一件正品”为事件C,由题意知A,B是相互独立事件(1)P(AB)P(A)P(B)0.900.800.72;(2)P()P()P()0.100.200.02;(3)P(C)P(A)P(B)P
7、(A)P()P()P(B)0.900.200.100.800.26.一点通解决此类问题要明确互斥事件和相互独立事件的意义若A,B相互独立,是与B,A与,与B也是相互独立的3甲射击命中目标的概率为,乙射击命中目标的概率为,当两人同时射击同一目标时,该目标被击中的概率为_解析:P.答案:4在一次班委干部的选任中,甲、乙、丙三名同学被选上的概率分别为P(甲)0.8,P(乙)0.6,P(丙)0.5,且知三人在选举中互不影响,则三人都被选上的概率为_,三人中至少有一人被选上的概率为_解析:三人都被选上的概率为P1P(甲)P(乙)P(丙)0.80.60.50.24.三人中至少有一人被选中的概率为P21(1
8、P(甲)(1P(乙)(1P(丙)10.20.40.510.040.96.答案:0.240.965一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率解:记:“第1次取出的2个球都是白球”的事件为A,“第2次取出的2个球都是红球”的事件为B,“第1次取出的2个球1个是白球、1个是红球”的事件为C,很明显,由于每次取出后再放回,A,B,C都是相互独立事件(1)P(AB)P(A)P(B).故第1次取出的2个球都是白球,第2次取出的2个球
9、都是红球的概率是.(2)P(CA)P(C)P(A).故第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率是.相互独立事件概率的应用例3某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9 000元的赔偿(假设每辆车最多只赔偿一次)设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额X的分布列思路点拨(1)利用对应条件去求获赔的概率;(2)分析X的所有取值,写出分布列精解详析设Ak表示第k辆车在一年内发生此种事故,k1,2,3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017-2018学年高中数学苏教版选修2-3教学案:2.3.2 事件的独立性 2017 2018 学年 高中数学 苏教版 选修 教学 2.3 事件 独立性
限制150内