2018考前三个月高考数学理科(江苏专用)总复习训练题:——考前回扣4 .doc
《2018考前三个月高考数学理科(江苏专用)总复习训练题:——考前回扣4 .doc》由会员分享,可在线阅读,更多相关《2018考前三个月高考数学理科(江苏专用)总复习训练题:——考前回扣4 .doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、回扣4数列1牢记概念与公式等差数列、等比数列等差数列等比数列通项公式ana1(n1)dana1qn1 (q0)前n项和Snna1d(1)q1,Sn;(2)q1,Snna12.活用定理与结论(1)等差、等比数列an的常用性质等差数列等比数列性质若m,n,p,qN*,且mnpq,则amanapaq;anam(nm)d;Sm,S2mSm,S3mS2m,仍成等差数列若m,n,p,qN*,且mnpq,则amanapaq;anamqnm;Sm,S2mSm,S3mS2m,仍成等比数列(Sm0)(2)判断等差数列的常用方法定义法an1and(常数)(nN*)an是等差数列通项公式法anpnq(p,q为常数,n
2、N*)an是等差数列中项公式法2an1anan2 (nN*)an是等差数列前n项和公式法SnAn2Bn(A,B为常数,nN*)an是等差数列(3)判断等比数列的常用方法定义法q (q是不为0的常数,nN*)an是等比数列通项公式法ancqn (c,q均是不为0的常数,nN*)an是等比数列中项公式法aanan2(anan1an20,nN*)an是等比数列3数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和(2)形如anbn(其中an为等差数列,bn为等比数列)的数列,利用错位相减法求和(3)通项公式形如an(其中a,b1,b2,c为常数)用裂项相消法求和(4)通项公式形如an(
3、1)nn或ana(1)n(其中a为常数,nN*)等正负项交叉的数列求和一般用并项法并项时应注意分n为奇数、偶数两种情况讨论(5)分组求和法:分组求和法是解决通项公式可以写成cnanbn形式的数列求和问题的方法,其中an与bn是等差(比)数列或一些可以直接求和的数列(6)并项求和法:先将某些项放在一起求和,然后再求Sn.1已知数列的前n项和求an,易忽视n1的情形,直接用SnSn1表示事实上,当n1时,a1S1;当n2时,anSnSn1.2易混淆几何平均数与等比中项,正数a,b的等比中项是.3等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算如等差数列an与bn的前n项和分别
4、为Sn和Tn,已知,求时,无法正确赋值求解4易忽视等比数列中公比q0导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解5运用等比数列的前n项和公式时,易忘记分类讨论一定分q1和q1两种情况进行讨论6利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项7裂项相消法求和时,分裂前后的值要相等,如,而是.8通项中含有(1)n的数列求和时,要把结果写成n为奇数和n为偶数两种情况的分段形式1在等差数列an中,已知a3a810,则3a5a7_.答案20解析设公差为d,则a3a82a19d10,3a5a73(a14d)(a16d)4a118d21020.2(2017南京、盐城一模)设an是等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018考前三个月高考数学理科江苏专用总复习训练题:考前回扣4 2018 考前 三个月 高考 数学 理科 江苏 专用 复习 训练 回扣
限制150内