2018版高中数学苏教版必修一学案:3.4.2 函数模型及其应用 .docx





《2018版高中数学苏教版必修一学案:3.4.2 函数模型及其应用 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学苏教版必修一学案:3.4.2 函数模型及其应用 .docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.4.2函数模型及其应用学习目标1.理解函数模型的概念和作用.2.能用函数模型解决简单的实际问题.3.了解建立拟合函数模型的思想和步骤,并了解检验和调整的必要性知识点一函数模型思考自由落体速度公式vgt是一种函数模型类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?梳理设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型知识点二用函数模型解决实际问题(1)解答应用问题的基本思想(2)解答应用问题的程序概括为“四步八字”,即审题:弄清题意,分
2、清条件和结论,理顺数量关系,初步选择模型;建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;求模:求解数学模型,得出数学结论;还原:将数学结论还原为实际应用问题的结论知识点三数据拟合思考1我们知道不同的身高需要坐不同高度的桌椅,但你知道任一确定的身高对应的桌椅的最佳高度吗?如何解决?梳理现实世界中的事物都是相互联系、相互影响的,反映事物变化的变量之间就存在着一定的关系这些关系的发现,通常是通过试验或实验测定得到一批数据,再经过分析处理得到的数据拟合就是研究变量之间这种关系,并给出近似的数学表达式的一种方法,根据拟合模型,我们还可以对某变量进行预测或控制
3、此类题的解题过程一般有如下五步:(1)作图:即根据已知数据,画出散点图;(2)选择函数模型:一般是根据散点图的特征,联想哪些函数具有类似图象特征,找几个比较接近的函数模型尝试;(3)求出函数模型:求出(2)中找到的几个函数模型的解析式;(4)检验:将(3)中求出几个函数模型进行比较、验证,得出最合适的函数模型;(5)利用所求出的函数模型解决问题思考2数据拟合时,得到的函数为什么要检验?类型一利用已知函数模型求解实际问题例1某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开出13 km后,以120 km/h的速度匀速行驶试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并
4、求火车离开北京2 h内行驶的路程反思与感悟在实际问题中,有很多问题的两变量之间的关系是已知函数模型,这时可借助待定系数法求出函数解析式再根据解题需要研究函数性质跟踪训练1如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米则水位下降1米后,水面宽_米类型二自建确定性函数模型解决实际问题命题角度1非分段函数模型例2某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y48x8 000,已知此生产线年产量最大为210吨若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?反思与感悟自建模型时
5、主要抓住四个关键:“求什么,设什么,列什么,限制什么”求什么就是弄清楚要解决什么问题,完成什么任务设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素为自变量列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等跟踪训练2有甲、乙两种商品,经营销售这两种商品所获得的利润依次为Q1万元和Q2万元,它们与投入的资金x万元的关系是Q1x,Q2.现有3万元资金投入使用,则对甲、乙两种商品如何投资才能获得最大利润?命题角度2分段函数模型例3某旅游点有50辆自
6、行车供游客租赁使用,管理这些自行车的费用是每日115元根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆旅游点规定:每辆自行车的日租金不低于3元并且不超过20元,每辆自行车的日租金x元只取整数,用y表示出租所有自行车的日净收入(日净收入即一日中出租的所有自行车的总收入减去管理费用后的所得)(1)求函数yf(x)的解析式;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?反思与感悟自变量x按取值不同,依不同的对应关系对应应变量y是分段函数的典例特征,建立分段函数模型时应注意:(1)分段函数的“段”一定要
7、分得合理,不重不漏(2)分段函数的定义域为对应每一段自变量取值范围的并集(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论跟踪训练3学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40 min的一节课中,注意力指数y与听课时间x(单位:min)之间的关系满足如图所示的图象当x(0,12时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x12,40时,图象是线段BC,其中C(40,50)根据专家研究,当注意力指数大于62时,学习效果最佳(1)试求yf(x)的函数关系式;(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学苏教版必修一学案:3.4.2函数模型及其应用 2018 高中数学 苏教版 必修 一学案 3.4 函数 模型 及其 应用

限制150内