2018版高中数学人教B版必修四学案:第一单元 疑难规律方法 .docx
《2018版高中数学人教B版必修四学案:第一单元 疑难规律方法 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修四学案:第一单元 疑难规律方法 .docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系巧应用.一、知一求二型例1 已知sin ,则tan _.解析由sin ,且sin2cos21,得cos ,因为,可得cos ,所以tan 2.答案2点评已知某角的弦函数值求其他三角函数值时,先利用平方关系求另一弦函数值,再求切函数值,需要注意的是利用平方关系时,若没有角度的限制,要注意分类讨论.二、“1”的妙用例2 证明:.证明因为sin2xcos2x1,所以1(sin2xcos2x)3,1(sin2xcos2x)2,所以.即原命
2、题得证.点评本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.三、齐次式型求值例3 已知tan 2,求值:(1)_;(2)2sin23cos2_.解析(1)因为cos 0,分子分母同除以cos ,得1.(2)2sin23cos2,因为cos2 0,分子分母同除以cos2,得1.答案(1)1(2)1点评这是一组在已知tan m的条件下,求关于sin 、cos 的齐次式值的问题.解这类问题需注意以下几点:(1)一定是关于sin 、cos 的齐次式(或能化为齐次式)的三角函数式.(2)因为cos 0,所以分子、分母可同时除以cosn (nN).这样可以将所求式
3、化为关于tan 的表达式,整体代入tan m的值求解.2单调不“单调”,应用很“奇妙”三角函数的单调性是三角函数的重要性质之一,也是高考常考的内容.利用其可以方便地进行比较值的大小、求单调区间、求解最值和解不等式等.下面举例归纳该性质在解题中的具体应用,希望能对同学们的学习有所帮助.一、信心体验比较大小例1 比较cos ,sin,cos 的大小.解因为sin cos()cos ,coscos ,又0cos cos ,即cos sin cos .点评比较三角函数值的大小关键是利用三角函数某区间的单调性,一般按下列步骤进行.将不同名的三角函数化为同名三角函数;用诱导公式将角化到同一单调区间,并比较
4、角的大小.由单调性得出各值的大小关系.二、重拳出击求解最值例2 已知f(x)sin(2x),xR.求函数f(x)在区间,上的最小值和最大值.解因为当2k2x2k(kZ),即kxk(kZ)时,函数f(x)sin(2x)单调递增;当2k2x2k(kZ),即kxk(kZ)时,函数单调递减,所以f(x)sin(2x)在区间,上为增函数,在区间,上为减函数.又f()0,f(),f()1.故函数f(x)在区间,上的最大值为,最小值为1.点评求三角函数的最值是一类重要的三角问题,也是考试中经常出现的考点,解题过程中要注意将x看作一个整体.利用三角函数的单调性求最值是三角函数基础知识的综合运用.三、触类旁通解
5、不等式例3 若0cos ,求的取值范围.解当时,不等式成立,当时,不等式不成立.当0,)(,2时,cos 0,则原不等式可化为tan ,根据正切函数的单调性得,;同理可得,当(,)时,cos x成立的x的取值范围是_.解析在同一坐标系中画出ysin x,ycos x,x(0,2)的图象如图.由图知,x(,).答案(,)点评求解三角函数的方程、不等式时,通常利用函数的图象使问题变得更简单.二、分类讨论思想例2 证明:(1)ncos ,nZ.证明当n为偶数时,令n2k,kZ,左边cos .右边(1)2kcos cos ,左边右边.当n为奇数时,令n2k1,kZ,左边cos .右边(1)2k1cos
6、 cos ,左边右边.综上所述,(1)ncos ,nZ成立.点评解答此类题目的关键在于正确应用诱导公式化简,如果被化简式子中的角是k(kZ)的形式,往往对参数k进行讨论.常见的一些关于参数k的结论有sin(k)(1)ksin (kZ);cos(k)(1)kcos (kZ);sin(k)(1)k1sin (kZ);cos(k)(1)kcos (kZ)等.三、函数与方程的思想例3 函数f(x)cos xsin2x(x)的最大值是_.解析f(x)cos xsin2xcos2xcos x1(cos x)2,设cos xt,因为x,所以由余弦函数的单调性可知,cos x,即t,又函数f(t)(t)2在,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学人教B版必修四学案:第一单元 疑难规律方法 2018 高中 学人 必修 四学案 第一 单元 疑难 规律 方法
限制150内