2018版高中数学人教B版必修五学案:第一单元 1.1.1 正弦定理(一) .docx





《2018版高中数学人教B版必修五学案:第一单元 1.1.1 正弦定理(一) .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修五学案:第一单元 1.1.1 正弦定理(一) .docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.1正弦定理(一)学习目标1.掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题知识点一正弦定理的推导思考1如图,在RtABC中,、各自等于什么?思考2在一般的ABC中,还成立吗?课本是如何说明的?梳理在任意ABC中,都有,证明方法除课本提供的方法外,还可借助三角形面积公式,外接圆或向量来证明知识点二正弦定理的呈现形式1._2R(其中R是_);2a2Rsin A;3sin A,sin B_,sin C_.知识点三解三角形一般地,把三角形的三个角及其对边分别叫做三角形的_已知三角形的几个元素求其他元素的过程叫做_类型一定理证明例1在钝角ABC中,证明正
2、弦定理反思与感悟(1)本例用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固(2)要证,只需证asin Bbsin A,而asin B,bsin A都对应CD.初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力跟踪训练1如图,锐角ABC的外接圆O半径为R,角A、B、C所对的边分别为a,b,c.求证:2R.类型二用正弦定理解三角形例2已知ABC,根据下列条件,解三角形:a20,A30,C45.反思与感悟(1)正弦定理实际上是三个等式:,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个(2)具体地说,以下两种情形适用正弦
3、定理:已知三角形的任意两角与一边;已知三角形的任意两边与其中一边的对角跟踪训练2在ABC中,已知a18,B60,C75,求b的值类型三边角互化命题角度1化简证明问题例3在任意ABC中,求证:a(sin Bsin C)b(sin Csin A)c(sin Asin B)0.命题角度2运算求解问题例4在ABC中,A,BC3,求ABC的周长的最大值反思与感悟利用2R或正弦定理的变形公式aksin A,bksin B,cksin C(k0)能够使三角形边与角的关系相互转化跟踪训练3在ABC中,角A、B、C的对边分别是a、b、c,若ABC123,求abc的值1. 在ABC中,一定成立的等式是()Aasi
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学人教B版必修五学案:第一单元 11.1正弦定理一 2018 高中 学人 必修 五学案 第一 单元 1.1 正弦 定理

限制150内