2018版高中数学北师大版必修三学案:第一章 统计 2.2 第2课时 系统抽样 .docx
《2018版高中数学北师大版必修三学案:第一章 统计 2.2 第2课时 系统抽样 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学北师大版必修三学案:第一章 统计 2.2 第2课时 系统抽样 .docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时系统抽样学习目标1.理解和掌握系统抽样.2.会用系统抽样从总体中抽取样本.3.能用系统抽样解决实际问题知识点一系统抽样的概念当总体容量和样本容量都很大时,无论是采用分层抽样或简单随机抽样,都是非常麻烦的系统抽样就是为了解决这个问题系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本这种抽样方法有时也叫等距抽样或机械抽样系统抽样具有如下特点:项目特点个体数目总体中个体无较大差异且个体数目较大抽取方式总体分成均衡的若干部分,分段间隔相等,在第一段内用简单随机抽样确定起始编号,其余依次加上间隔的整数倍概率特征每个个体
2、被抽到的可能性相同,是等可能抽样系统抽样的优劣:(1)当总体中的个体数较大时,用系统抽样更易实施,更节约成本;(2)系统抽样的效果与个体的编号有关,如果编号的特征随编号呈周期性变化,可能使样本的代表性很差知识点二系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N个个体编号有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)分段:确定分段间隔k,对编号进行分段当(n是样本容量)是整数时,取k;(3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l(lk);(4)成样:按照一定的规则抽取样本通常是将l
3、加上间隔k得到第2个个体编号(lk),再加k得到第3个个体编号(l2k),依次进行下去,直到获取整个样本知识点三三种抽样方法的比较简单随机抽样、分层抽样、系统抽样的比较如下表所示:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相等从总体中逐个抽取总体中的个体数较少分层抽样将总体分成几层,在各层中按同一抽样比抽取在各层抽样时,采用简单随机抽样或系统抽样总体由差异明显的几部分组成系统抽样将总体均分成几部分,按预先确定的规则分别在各部分抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多题型一对系统抽样概念的理解例1下列抽样中,最适宜用系统抽样的是()A某市的4个
4、区共有2000名学生,且4个区的学生人数之比为3282,从中抽取200名入样B从某厂生产的2000个电子元件中随机抽取5个入样C从某厂生产的2000个电子元件中随机抽取200个入样D从某厂生产的20个电子元件中随机抽取5个入样答案C解析根据系统抽样的定义和特点判断,A项中的总体有明显的层次,不适宜用系统抽样;B项中样本容量很小,适合用随机数法;D项中总体容量很小,适合用抽签法反思与感悟系统抽样适用于个体数较大的总体,判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样跟踪训练1下列抽样方法不是系统抽样的是()A
5、从标有115号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i05,i010(超过15则从1再数起)号入选B工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈答案C解析A编号间隔相同,B时间间隔相同,D相邻两排座位号的间隔相同,均满足系统抽样的特征只有C项无明显的系统抽样的特征题型二系统抽样的应用例2为了了解某地区今年高一学生期末考试数学学科的成绩,
6、拟从参加考试的15000名学生的数学成绩中抽取容量为150的样本请用系统抽样写出抽取过程解(1)对全体学生的数学成绩进行编号:1,2,3,15000.(2)分段:由于样本容量与总体容量的比是1100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体(3)在第一部分即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,14956,这样就得到一个容量为150的样本反思与感悟当总体容量能被样本容量整除时,分段间隔k;当用系统抽样抽取样本时,通常是将起始数l加上间隔k得到第2个个体编号(lk),再加k得到第3个个体编号(l2
7、k),依次进行下去,直到获取整个样本跟踪训练2现有60瓶牛奶,编号为1至60,若从中抽取6瓶检验,用系统抽样方法确定所抽取的编号可能为()A3,13,23,33,43,53B2,14,26,38,42,56C5,8,31,36,48,54D5,10,15,20,25,30答案A解析因为60瓶牛奶分别编号为1至60,所以把它们依次分成6组,每组10瓶,要从中抽取6瓶检验,用系统抽样方法进行抽样若在第一组抽取的编号为n(1n10),则所抽取的编号应为n,n10,n50.对照4个选项,只有A项符合系统抽样系统抽样的显著特点之一就是“等距抽样”因此,对于本题只要求出抽样的间隔k10,就可判断结果题型三
8、系统抽样的设计例3某校高中二年级有253名学生,为了了解他们的视力情况,准备按15的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程解(1)先把这253名学生编号000,001,252;(2)用随机数法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1,2,3,250;(4)分段取分段间隔k5,将总体均分成50段,每段含5名学生;(5)从第一段即15号中用简单随机抽样抽取一个号作为起始号,如l;(6)从后面各段中依次取出l5,l10,l15,l245这49个号这样就按15的比例抽取了一个样本容量为50的样本反思与感悟1.当总体容量不能被样本容量整除时,要
9、先从总体中随机剔除整除后余数个个体且必须是随机的,即每个个体被剔除的机会均等剔除个体后使总体中剩余的总体容量能被样本容量整除.2.剔除个体后需对样本重新编号.3.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了跟踪训练3为了了解参加某次考试的2607名学生的成绩,决定用系统抽样的方法抽取一个容量为260的样本请根据所学的知识写出抽样过程解按下列步骤获取样本:(1)将每一名学生编号,由0001到2607;(2)利用随机数法从总体中剔除7人;(3)将剩下的2600名学生重新编号(分别为0001,0002,2600),并分成260段;(4)在第一段0001,0002,00
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018版高中数学北师大版必修三学案:第一章 统计 2.2 第2课时系统抽样 2018 高中数学 北师大 必修 三学案 第一章 课时 系统抽样
限制150内