2018年高考数学(理)二轮复习教师用书:第1部分 重点强化专题 专题1 第2讲 解三角形问题 .doc
《2018年高考数学(理)二轮复习教师用书:第1部分 重点强化专题 专题1 第2讲 解三角形问题 .doc》由会员分享,可在线阅读,更多相关《2018年高考数学(理)二轮复习教师用书:第1部分 重点强化专题 专题1 第2讲 解三角形问题 .doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2讲解三角形问题题型1利用正、余弦定理解三角形(对应学生用书第5页)核心知识储备1正弦定理及其变形在ABC中,2R(R为ABC的外接圆半径)变形:a2Rsin A,sin A,abcsin Asin Bsin C等2余弦定理及其变形在ABC中,a2b2c22bccos A;变形:b2c2a22bccos A,cos A.3三角形面积公式SABCabsin Cbcsin Aacsin B.典题试解寻法【典题1】(考查解三角形应用举例)如图21,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600 m后到达B处,测得此山顶在西偏北75的方向上,仰角为
2、30,则此山的高度CD_m.图21思路分析由已知条件及三角形内角和定理可得ACB的值在ABC中,利用正弦定理求得BC在RtBCD中利用锐角三角函数的定义求得CD的值解析依题意有AB600,CAB30,CBA18075105,DBC30,DCCB.ACB45,在ABC中,由,得,有CB300,在RtBCD中,CDCBtan 30100,则此山的高度CD100 m.答案100【典题2】(考查应用正余弦定理解三角形)(2017全国卷)ABC的内角A,B,C的对边分别为a,b,c.已知ABC的面积为.(1)求sin Bsin C;(2)若6cos Bcos C1,a3,求ABC的周长. 【导学号:07
3、804011】解(1)由题设得acsin B,即csin B.由正弦定理得sin Csin B.故sin Bsin C.(2)由题设及(1)得cos Bcos Csin Bsin C,即cos(BC).所以BC,故A.由题意得bcsin A,a3,所以bc8.由余弦定理得b2c2bc9,即(bc)23bc9.由bc8,得bc.故ABC的周长为3.类题通法1.关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.2.在三角形中,正、余弦定理可以实现边角互化
4、,尤其在余弦定理a2b2c22bccos A中,有a2c2和ac两项,二者的关系a2c2(ac)22ac经常用到.3.三角形形状判断的两种思路:一是化角为边;二是化边为角.注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.对点即时训练1在ABC中,内角A,B,C所对的边分别为a,b,c,若b2ccos A,c2bcos A,则ABC的形状为()A直角三角形B锐角三角形C等边三角形D等腰直角三角形Cb2ccos A,c2bcos A,b4bcos2A,即cos A,或cos A(舍)bc,ABC为等边三角形2如图22,在A
5、BC中,AB2,cos B,点D在线段BC上图22(1)若ADC,求AD的长;(2)若BD2DC,ACD的面积为,求的值. 【导学号:07804012】解(1)在三角形中,cos B,sin B.在ABD中,又AB2,ADB,sin B,AD.(2)BD2DC,SABD2SADC,SABC3SADC,又SADC,SABC4.SABCABBCsinABC,BC6.SABDABADsinBAD,SADCACADsinCAD,SABD2SADC,2,在ABC中,AC2AB2BC22ABBCcosABC,AC4,24.题型强化集训(见专题限时集训T1、T2、T3、T4、T5、T6、T9、T10、T11
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018年高考数学理二轮复习教师用书:第1部分 重点强化专题 专题1 第2讲解三角形问题 2018 年高 数学 二轮 复习 教师 部分 重点 强化 专题 三角形 问题
链接地址:https://www.taowenge.com/p-2626517.html
限制150内