最新北京大学量子力学课件第28讲ppt课件.ppt
《最新北京大学量子力学课件第28讲ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新北京大学量子力学课件第28讲ppt课件.ppt(80页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北京大学量子力学课件第北京大学量子力学课件第28讲讲要有非零解要有非零解( (即即 不全为不全为 ) ),则必须,则必须由这可解得由这可解得 )0(lka00E)H(mk1lmk1 1lnElf, 2 , 1n k)(nlklk)(lna000若若 任意任意则则 可用非简并微扰方法处理可用非简并微扰方法处理 nn0H0ln10 n l l0ln 例例1: 1: 在均匀电场中的刚体转子在均匀电场中的刚体转子 所以所以 的能级的能级 有有 重简并重简并 220LH0H 2120)l ( lEl1l 2 而而 ( 在在 方向)方向) 如取如取 的共同本征函数作为零的共同本征函数作为零级波函数,则可直
2、接用非简并微扰方法求级波函数,则可直接用非简并微扰方法求微扰对能级能量的影响微扰对能级能量的影响0L,HL,Hz1z0 cosdH1 z)L,H(z0 而我们现在取而我们现在取 的共同本征态,的共同本征态, ,简并态的标记恰好为,简并态的标记恰好为 的量子数。的量子数。 因因 所以所以 因此,如处理因此,如处理 ,则不必担心其,则不必担心其它简并态它简并态 ( ( )的存在。)的存在。 lmY)L,H(z0zLmmmllVlmHml 101 L,Hz0lmYmlY 0mm 例例2 2:在均匀外电场中的平面转子在均匀外电场中的平面转子 有本征态有本征态 220zLH imem21 imem21
3、相应本征值为相应本征值为 。所以,是两重简并。所以,是两重简并 而而 ( ( 在在 轴轴 ) ) cosddH10decose2dmHmim20im1 x0decose2dmHmim20im1 222m即,简并态之间无作用;显然即,简并态之间无作用;显然 按照前面的讨论。现在态的简并是以按照前面的讨论。现在态的简并是以 的量子数的量子数 来表示的。但来表示的。但所以原则上不能用非简并微扰去做。所以原则上不能用非简并微扰去做。 m 0L,Hz0 0L,Hz1 zL01 i ,mE21,i 在上一节,我们已看到,用非简并微在上一节,我们已看到,用非简并微扰论去求二级修正,所得结果,对扰论去求二级修
4、正,所得结果,对是错误的是错误的 我们已利用正确的公式我们已利用正确的公式求得正确的能量二级修正求得正确的能量二级修正1 m0a)EEEmHmmHm(21j , i)0(mjij2mm0m0mj11i 所以,利用所以,利用 不行。看能否找到另不行。看能否找到另一力学量来将一力学量来将 的简并态分类,以便能的简并态分类,以便能用非简并微扰论来处理?用非简并微扰论来处理? zL222216 dE2222265 dE0H 有一算符有一算符 使使 由于由于 R 222021H cosdH1 所以所以 因此,因此, 的本征态,不是按的本征态,不是按分类,分类,而是按而是按 分类,即分类,即取取 的共同本
5、征的共同本征函数组作为零级波函数,则可用非简并微扰方函数组作为零级波函数,则可用非简并微扰方法来处理法来处理。0R,H0 0R,H1 0HzL R R,H0 注意注意 )ee (211ii 221 )ee (211ii 221 0H R 210 于是,于是,一级微扰修正为一级微扰修正为 而而二级微扰修正二级微扰修正 011111 HE m0m012121EE1HmE 020121000121EE1H2EE1H0 22265 d222222d6d m0m012121EE1HmE02012112EEH2226 d错误错误 例例3 3: 若以若以 来分类,两重简并态来分类,两重简并态)(VLHz00
6、22 mcos11 msin12)R,H(0 或以或以 来分类,两重简并态来分类,两重简并态 由于由于 , , ,所以,所以原则上都不能用非简并微扰方法去做。原则上都不能用非简并微扰方法去做。 若用非简并微扰方法求能量的修正,则若用非简并微扰方法求能量的修正,则 )L,H(z0 ime211 ime2120H,L1z 01 H,R02011111mcosVHE 而用第二组而用第二组 02021212msinVHE 2011111VHE 2VHE021212 但若用但若用 ,它是将,它是将 显然,显然, 若取若取 的共同本征函数为的共同本征函数为 的本征函数的本征函数 )(00 0H, H, 1
7、0 )H,(0 0H)(mcos101 )(msin102 这时,可用非简并微扰方法做这时,可用非简并微扰方法做 如严格按简并微扰论做,在第一组如严格按简并微扰论做,在第一组 011111VHE0HE21212 0EmsinVmsinmcosVmsinmcosVEmcosV102000000010200EVE12011 在第二组在第二组 0EVe2Ve2VE2V10im20im2010000EVE12011 在处理简并能级微扰时,要特别在处理简并能级微扰时,要特别用心于用心于 A. A. 选取正确的零级波函数选取正确的零级波函数; ; B. B. 正确判断能否用非简并微扰正确判断能否用非简并微
8、扰 论的方法去求微扰修正。论的方法去求微扰修正。8.2 8.2 变分法:定态微扰论有效,是必须找到变分法:定态微扰论有效,是必须找到 ,要求要求 有解析解,且逼近有解析解,且逼近 。但这并不是容。但这并不是容易做到的。易做到的。 另一种求解法,是用变分法求定态解。另一种求解法,是用变分法求定态解。 (1 1)体系的哈密顿量在某一满足物理要求的试)体系的哈密顿量在某一满足物理要求的试探波函数上的平均值必大于等于体系基态能量探波函数上的平均值必大于等于体系基态能量 证:证: 10HHH0HH HH 设:设: 是是 的本征态,本征值的本征态,本征值为为 显然,显然, 形成正交完备组,于是形成正交完备
9、组,于是210, H210EEEkkkEH k kkkakk*kk kk k , k* kaaHaaH 0k2kk2k0k2kkk2kEaaEaEa 当当 时,等号成立。时,等号成立。 因此,当我们用一试探波函数去找能量平均因此,当我们用一试探波函数去找能量平均值时,一般总比基态能量大。再通过求变分,以值时,一般总比基态能量大。再通过求变分,以得尽可能小的平均值及相应波函数,使之较为接得尽可能小的平均值及相应波函数,使之较为接近真值。当然,这平均值仍大于等于基态能量,近真值。当然,这平均值仍大于等于基态能量,即由变分给出的平均值是基态能量的上限即由变分给出的平均值是基态能量的上限。 (2 2)
10、Ritz Ritz 变分法变分法 现可利用变分原理到具体问题上,以求体系现可利用变分原理到具体问题上,以求体系的近似本征能量和本征函数。的近似本征能量和本征函数。 基本思想基本思想:根据物理上的考虑给出含一组参:根据物理上的考虑给出含一组参0 量的试探波函数量的试探波函数 A.A.求能量平均值求能量平均值,以,以 表示,表示, B. B. 对对 求极值求极值,从而确定,从而确定 显然,显然, (基态能量)(基态能量)), r (21 ,21 H),(H21,21 ),(0201 00201E),(H 当然,如果要求第当然,如果要求第 条能级的近似本征值条能级的近似本征值和本征函数,则要求知道第
11、一条(基态)和本征函数,则要求知道第一条(基态) 第第 条能级的波函数,(设条能级的波函数,(设 已归一化)。取试探波函数已归一化)。取试探波函数 ,然后处理,然后处理一一下,给出新的波函数下,给出新的波函数 再求再求 的极值,定出的极值,定出 1m1m21, mmmmm),( 221121mmm 11mmmmH ,21 m从而给出第从而给出第 条能级的近似本征值(即上限)条能级的近似本征值(即上限)及近似波函数及近似波函数m),(mi1miimiii21m mimiimi2mimi2miimmEHH 所以,是第所以,是第 条能级的上限。条能级的上限。 例:例:求氦原子的基态能量求氦原子的基态
12、能量( (即外有两个电子即外有两个电子) ) 我们知道,氦原子的哈密顿量为(忽略)我们知道,氦原子的哈密顿量为(忽略) mi2mimi2mimE mEm2122212222212rrerezrez22H 从物理上考虑,当二个电子在原子中运动,从物理上考虑,当二个电子在原子中运动,它们互相屏蔽,使每个电子感受到原子核的作它们互相屏蔽,使每个电子感受到原子核的作用不是两个单位的正电荷,而是比它小。究竟用不是两个单位的正电荷,而是比它小。究竟是多少?很自然可把它当作待定参量,利用是多少?很自然可把它当作待定参量,利用Ritz 变分法来求基态能量的近似值。变分法来求基态能量的近似值。 因类氢离子的基态
13、波函数为因类氢离子的基态波函数为02130331001azrare)az(ea)z , r ( 则则 满足满足所以,取试探波函数为所以,取试探波函数为 22eza0224ee), r (n 2022n222na2e), r ()re2( 00303021 a)rr(ea)(显然,显然,于是于是 )(a2e)()re2(022i22i2 220ea21212221222221222rdrd)()rrerezrez( )()(H* (这里(这里 是已归一化的)是已归一化的) )(212222212212*rdrd)()re2re2( )(212122212rdrd)(rre)re(z)re(z )
14、(* 02022022a8e5)a2e(2z2a2e2)85z22(ae2202)z(ae)(H1652202 0)165z(22(aeH02165 z0220165165ae)z()z(HE RitzRitz变分,是由给定变分,是由给定 (函数形式给定)(函数形式给定),即,即 ,仅改变参量仅改变参量 ,使,使 取极小(但函数形式不变)取极小(但函数形式不变),所以只能得到近似,所以只能得到近似的本征函数和的本征函数和本征值的上限本征值的上限 eV38.77)eV975.78(实验值为 ), r (21 ,2 ,1 H8.3 量子跃迁量子跃迁 前二节,我们解决的是前二节,我们解决的是 与与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 北京大学 量子力学 课件 28 ppt
限制150内