第12课时分式方程的应用.ppt
《第12课时分式方程的应用.ppt》由会员分享,可在线阅读,更多相关《第12课时分式方程的应用.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.5 可化为一元一次方程的分式方程第1章 分 式导入新课讲授新课当堂练习课堂小结第2课时 分式方程的应用学习目标1.理解数量关系正确列出分式方程 (难点)在不同的实际问题中能审明题意设未知数,列分式方程解决实际问题导入新课导入新课问题引入1.解分式方程的基本思路是什么?2.解分式方程有哪几个步骤?3.验根有哪几种方法?分式方程整式方程 转化去分母一化二解三检验四写根 有两种方法:第一种是代入最简公分母;第二种代入原分式方程.通常使用第一种方法.4.我们现在所学过的应用题有哪几种类型?每种类型的基本公式是什么?u基本上有4种:(1)行程问题: 路程=速度时间以及它的两个变式;(2)数字问题:
2、在数字问题中要掌握十进制数的表示法;(3)工程)工程问题: 工作量=工时工效以及它的两个变式;(4)利润问题: 批发成本=批发数量批发价;批发数量=批发成本批发价;打折销售价=定价折数;销售利润=销售收入一批发成本;每本销售利润=定价一批发价;每本打折销售利润=打折销售价一批发价,利润率=利润进价。讲授新课讲授新课列分式方程解决工程问题一例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?u表格法分析如下:工作时间(月) 工作效率工作总量(1)甲队乙队1213121x12x32u等量关系:甲队
3、完成的工作总量+乙队完成的工作总量=“1”设乙单独完成这项工程需要x月月.解:设乙单独 完成这项工程需要x个月.记工作总量为1,甲的工作效率是 ,根据题意得131111(1)1,322x即111.22x方程两边都乘以2x,得解得 x=1. 检验:当x=1时,2x0.所以,x=1为原分式方程的解且符合题意.由上可知,若乙队单独施工1个月可以完成全部任务,而甲队单独施工需3个月才可以完成全部任务,所以乙队的施工速度快.想一想:本题的等量关系还可以怎么找?甲队单独完成的工作总量+两队合作完成的工作总量=“1”此时表格怎么列,方程又怎么列呢?工作时间(月) 工作效率工作总量(1)甲单独两队合作12设乙
4、单独完成这项工程需要x月.则乙队的工作效率是 甲队的工作效率是 ,合作的工作效率是 .1x1311()3x此时方程是:111()3x1311111()1323x知识要点工程问题1.题中有“单独”字眼通常可知工作效率;2.通常间接设元,如 单独完成需 x(单位时间),则可表示出其工作效率;4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两
5、队工作效率的和”. 抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成现甲、乙两队合作2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成求甲、乙两队单独完成全部工程各需多少小时?解析:设甲队单独完成需要x小时,则乙队需要(x3)小时,根据等量关系“甲工效2乙工效甲队单独完成需要时间1”列方程做一做解:设甲队单独完成需要x小时,则乙队需要(x3)小时由题意得 .解得x6.经检验x6是方程的解且符合题意x39.答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时解决工程问题的思路方法:各部分工作量之和等于1,常从工作量和工
6、作时间上考虑相等关系例2 朋友们约着一起开着2辆车自驾去黄山玩,其中面包车为领队,小轿车车紧随其后,他们同时出发,当面包车车行驶了200公里时,发现小轿车车只行驶了180公里,若面包车的行驶速度比小轿车快10km/h,请问面包车,小轿车的速度分别为多少? 0180200列分式方程解决行程问题二路程速度时间面包车小轿车200180 x+10 x10200 xx180分析:设小轿车的速度为x千米/小时 面包车的时间=小轿车的时间 等量关系: u列表格如下:解:设小轿车的速度为x千米/小时,则面包车速度为x+10千米/小时,依题意得 解得x90经检验,x90是原方程的解,且x=90,x+10=100
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12 课时 分式 方程 应用
限制150内