最新北京邮电大学高等数学4-4精品课件.ppt
《最新北京邮电大学高等数学4-4精品课件.ppt》由会员分享,可在线阅读,更多相关《最新北京邮电大学高等数学4-4精品课件.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北京邮电大学高等数学北京邮电大学高等数学4-4有理函数的定义:有理函数的定义:两个多项式的商表示的函数称之两个多项式的商表示的函数称之. .mmmmnnnnbxbxbxbaxaxaxaxQxP 11101110)()(其其中中m、n都都是是非非负负整整数数;naaa,10及及mbbb,10都都是是实实数数,并并且且00 a,00 b.一、有理函数的积分一、有理函数的积分例例4 4 求积分求积分 .)1(12dxxx dxxx 2)1(1dxxxx 11)1(112dxxdxxdxx 11)1(112.)1ln(11lnCxxx 解解例例5 5 求积分求积分 解解.)1)(21(12 dxxxd
2、xxxdxx 2151522154 dxxx)1)(21(12dxxdxxxx 2211511251)21ln(52.arctan51)1ln(51)21ln(522Cxxx 例例6 6 求积分求积分解解.11632dxeeexxx 令令6xet ,ln6tx ,6dttdx dxeeexxx 63211dttttt61123 dtttt )1)(1(162dttttt 2133136Ctttt arctan3)1ln(23)1ln(3ln62dttttt 2133136.)arctan(3)1ln(23)1ln(3636Ceeexxxx 23)1ln(3ln6 ttdttttd 222113
3、1)1(说明说明 将有理函数化为部分分式之和后,只出将有理函数化为部分分式之和后,只出现三类情况:现三类情况:)1(多项式;多项式;;)()2(naxA ;)()3(2nqpxxNMx 讨论积分讨论积分,)(2 dxqpxxNMxn,42222pqpxqpxx 令令tpx 2,422pqa ,2MpNb 则则 dxqpxxNMxn)(2 dtatMtn)(22 dtatbn)(22,222atqpxx , bMtNMx 记记, 1)2( n dxqpxxNMxn)(2122)(1(2 natnM.)(122 dtatbn这三类积分均可积出这三类积分均可积出, 且原函数都是初等函数且原函数都是初
4、等函数.结论结论 有理函数的原函数都是初等函数有理函数的原函数都是初等函数. ., 1)1( n dxqpxxNMx2)ln(22qpxxM ;2arctanCapxab 三角有理式的定义:三角有理式的定义: 由三角函数和常数经过有限次四则运算由三角函数和常数经过有限次四则运算构成的函数称之一般记为构成的函数称之一般记为)cos,(sinxxR2cos2sin2sinxxx 2sec2tan22xx ,2tan12tan22xx ,2sin2coscos22xxx 二、三角函数有理式的积分二、三角函数有理式的积分2sec2tan1cos22xxx ,2tan12tan122xx 令令2tanx
5、u ,12sin2uux ,11cos22uux uxarctan2 duudx212 dxxxR)cos,(sin.1211,122222duuuuuuR (万能置换公式)(万能置换公式)例例7 7 求积分求积分.cossin1sin dxxxx解解,12sin2uux 2211cosuux ,122duudx 由万能置换公式由万能置换公式 dxxxxcossin1sinduuuu )1)(1(22duuuuuu )1)(1(112222duuuuu )1)(1()1()1(222duuu 211duu 11uarctan )1ln(212u Cu |1|ln2tanxu 2x |2sec|
6、lnx .|2tan1|lnCx 例例8 8 求积分求积分.sin14 dxx解(一)解(一),2tanxu ,12sin2uux ,122duudx dxx4sin1duuuuu 46428331Cuuuu 333318133.2tan2412tan832tan832tan24133Cxxxx 解(二)解(二)修改万能置换公式修改万能置换公式,xutan 令令,1sin2uux ,112duudx dxx4sin1duuuu 2421111duuu 421Cuu 1313.cotcot313Cxx 解(三)解(三)可以不用万能置换公式可以不用万能置换公式. dxx4sin1dxxx)cot1
7、(csc22 xdxxxdx222csccotcsc )(cot xd .cot31cot3Cxx 结论结论 比较以上三种解法比较以上三种解法, 便知万能置换不一定便知万能置换不一定是最佳方法是最佳方法, 故三角有理式的计算中先考故三角有理式的计算中先考虑其它手段虑其它手段, 不得已才用万能置换不得已才用万能置换.例例9 9 求积分求积分.sin3sinsin1 dxxxx解解2cos2sin2sinsinBABABA dxxxxsin3sinsin1 dxxxxcos2sin2sin1 dxxxx2cossin4sin1 dxxx2cossin141 dxx2cos141 dxxxxx222
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 北京 邮电大学 高等数学 精品 课件
限制150内