高数同济六版bai-D5_习题课.ppt
《高数同济六版bai-D5_习题课.ppt》由会员分享,可在线阅读,更多相关《高数同济六版bai-D5_习题课.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目录 上页 下页 返回 结束 习题课一、与定积分概念有关的问题的解法一、与定积分概念有关的问题的解法二、有关定积分计算和证明的方法二、有关定积分计算和证明的方法定积分及其相关问题 第五五章 目录 上页 下页 返回 结束 一、与定积分概念有关的问题的解法一、与定积分概念有关的问题的解法1. 用定积分概念与性质求极限2. 用定积分性质估值3. 与变限积分有关的问题例例1. 求.de1elim10 xxxxnn解解: 因为 1,0 x时,xxnxe1e0所以xxxxnde1e100 xxnd1011n利用夹逼准则得0de1elim10 xxxxnn,nx目录 上页 下页 返回 结束 1) 思考例1下
2、列做法对吗 ?利用积分中值定理e1elimnn0不对不对 ! 因为 依赖于,n且,10说明说明: 2) 此类问题放大或缩小时一般应保留含参数的项 . px11ppxx11) 10( x1px1 如, P270 题7xxxxnnde1elim10故没理由认为0limnn目录 上页 下页 返回 结束 nnnnnnnnnI1212sinsin1sinlim解:解:将数列适当放大和缩小,以简化成积分和形式nkknkn11sin已知,2dsin1sinlim101xxnnknkn利用夹逼准则夹逼准则可知.2Inknnknn11sin1nknnk11sin(1998考研) 11limnnn例例2. 求目录
3、 上页 下页 返回 结束 思考思考: :nnnnnnnJ1212sinsinlim提示提示: :由上题1sinlimnIJnn11) 1(sinnnnn?11) 1(sinlimnnnnn222sinsin1sinlim1212nnnnnnnnnI00故目录 上页 下页 返回 结束 练习练习: 1.求极限).21(lim22222nnnnnnnn解:解:原式nn1limnini12)(11xxd1110242. 求极限).2212(lim12121nnnnnnnnn提示提示:原式nn1limnini121limnnnnini12n1xxd2102ln111limnnnini12左边= 右边目录
4、 上页 下页 返回 结束 例例3.d411032xxx估计下列积分值解解: 因为 1 ,0 x3241xx 41,412xxxxd411032xd2110 xxd41102即xxxd411032216目录 上页 下页 返回 结束 例例4. 证明.e2dee222042xxx证证: 令,e)(2xxxf则xxxxf2e) 12()(令,0)( xf得,21x, 1)0(f,e1)(421f2e)2(f,e1)(min42,0 xf22,0e)(maxxf故2204e2dee22xxx目录 上页 下页 返回 结束 例例5.设)(xf在1 ,0上是单调递减的连续函数, 试证1 ,0q都有不等式100
5、d)(d)(xxfqxxfq证明证明:显然1,0qq时结论成立.(用积分中值定理)qxxf0d)(10d)(xxfqqxxfq0d)()1 (1d)(qxxfq)1 (q)(1fqq)()1 (2fq , 01q1 ,2q10 q当时,)()()1 (21ffqq0故所给不等式成立 .明对于任何目录 上页 下页 返回 结束 例例6., 3) 1 (,0)(fxxf处连续在已知且由方程xyyxttfyttfxttf111d)(d)(d)(确定 y 是 x 的函数 , 求. )(xf解:解:方程两端对 x 求导, 得)( yxfyttf1d)(yyfx)(xttfy1d)()(xfy)(yxy令
6、x = 1, 得) 1 (d)()(1fyttfyyfy再对 y 求导, 得) 1 (1)(fyyfy3Cyyf ln3)(, 3, 1Cy得令3ln3)(xxf故0目录 上页 下页 返回 结束 例例7.ttttfxfxdcos2sin)()(02求可微函数 f (x) 使满足解解: 等式两边对 x 求导, 得)()(2xfxfxxxfcos2sin)(不妨设 f (x)0,则xxxfcos2sin21)(xxfxfd)()(xxxdcos2sin21Cx )cos2ln(21目录 上页 下页 返回 结束 注意 f (0) = 0, 得3ln21C3ln21)cos2ln(21)(xxfxco
7、s23ln21ttttfxfxdcos2sin)()(02Cxxf)cos2ln(21)(目录 上页 下页 返回 结束 例例8. 求多项式 f (x) 使它满足方程解解: 令, t xu 10302d) 1(d)(xxttfttxfx则10d)(ttxfxxuuf01d)(代入原方程得xuuf0d)(xttfx0d) 1(242xx 两边求导:)(xfxttf0d) 1() 1( xfxxx443)(xf ) 1(2xf) 1( xfx4122x可见 f (x) 应为二次多项式 , 设cxbxaxf2)(代入 式比较同次幂系数 , 得. 1,4, 3cba故143)(2xxxf再求导:目录 上
8、页 下页 返回 结束 二、有关定积分计算和证明的方法二、有关定积分计算和证明的方法1. 熟练掌握定积分计算的常用公式和方法2. 注意特殊形式定积分的计算3. 利用各种积分技巧计算定积分4. 有关定积分命题的证明方法思考思考: 下列作法是否正确?xxx1d1112112xxd111132)(32xt 令0d23112111ttt目录 上页 下页 返回 结束 例例9. 求.de12ln02xx解解: 令,sinetx则,sinlntx,dsincosdtttx原式ttttdsincoscos62tttdsinsin1262tttd)sin(csc26coscotcsclnttt6223)32(ln
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 bai D5_ 习题
限制150内