《高级中学文科数学导数复习资料.doc》由会员分享,可在线阅读,更多相关《高级中学文科数学导数复习资料.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.*导数常见基本初等函数的导数公式和导数的四则运算法则:(C 为常数); .法则1:法则2:法则3:.一、导数在研究函数中的应用1、了解函数的单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间2、了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值,会求在闭区间上函数的最大值、最小值。3、会用导数解决某些实际问题。导数的概念与和、差、积、商的导数4、导数的定义:设函数在处附近有定义,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即5、导数的几何意义:是曲线上点()处的切线的斜率。因此,如果在点可
2、导,则曲线在点()处的切线方程为,。6、导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数, 7、可导::如果函数在开区间内每一点都有导数,则称函数在开区间内可导8、可导与连续的关系:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续,反之不成立 函数具有连续性是函数具有可导性的必要条件,而不是充分条件。9、求函数的导数的一般方法:(1)求函数的改变量(2)求平均变化率(3)取极限,得导数 二、单调性及其应用 1、利用导数研究多项式函数单调性的一般步骤(1)求(x
3、)(2)确定(x)在(a,b)内符号(3)若(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若(x)0的解集与定义域的交集的对应区间为增区间;(x) ()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4、判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5、求函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x) (2)求方程f(x)=0的
4、根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值6、函数的最大值和最小值:在闭区间上连续的函数在上必有最大值与最小值在开区间内连续的函数不一定有最大值与最小值 函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的
5、极值可能不止一个,也可能没有一个7、利用导数求函数的最值步骤:求在内的极值;将的各极值与、比较得出函数在上的最值例1 在处可导,则 思路: 在处可导,必连续 例2求证下列不等式(1) (相减)(2) (相除)(3) 证:(1) 为上 恒成立 在上 恒成立例3利用导数求和:(1);(2)。分析:这两个问题可分别通过错位相减法及利用二项式定理来解决。转换思维角度,由求导公式,可联想到它们是另外一个和式的导数,利用导数运算可使问题的解决更加简捷。解:(1)当x=1时,;当x1时,两边都是关于x的函数,求导得即(2),两边都是关于x的函数,求导得。令x=1得,即。单调区间讨论例4设,求函数的单调区间.
6、分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 解:. 当时 .(i)当时,对所有,有.即,此时在内单调递增.(ii)当时,对,有,即,此时在(0,1)内单调递增,又知函数在x=1处连续,因此,函数在(0,+)内单调递增(iii)当时,令,即.解得.因此,函数在区间内单调递增,在区间内也单调递增.令,解得.因此,函数在区间内单调递减.例5.已知函数,讨论的单调性.例9.已知函数,其中 (1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.分离常数例10.已知函数.()求的最小值;()若对所有都有,求实数的取值范围.学科网解:
7、的定义域为, 的导数. 令,解得;令,解得.从而在单调递减,在单调递增.所以,当时,取得最小值. 学科网()解法一:令,则, 学科网错误!未找到引用源。 若,当时,学科网故在上为增函数,所以,时,即.学科网错误!未找到引用源。 若,方程的根为 ,此时,若,则,故在该区间为减函数.所以时,即,与题设相矛盾. 综上,满足条件的的取值范围是. 学科网解法二:依题意,得在上恒成立,即不等式对于恒成立 . 令, 则. 当时,因为, 故是上的增函数, 所以 的最小值是,所以的取值范围是. 例11.已知函数,设()求函数的单调区间;学科网()若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;学
8、科网学科网求取值范围例13设函数 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围 解析 (1) , 因为, 即 恒成立, 所以 , 得,即的最大值为 (2) 因为 当时, ;当时, ;当时, ; 所以 当时,取极大值 ; 当时,取极小值 ; 故当 或时, 方程仅有一个实根. 解得 或.例13设函数()当曲线处的切线斜率()求函数的单调区间与极值;()已知函数有三个互不相同的零点0,且。若对任意的,恒成立,求m的取值范围。导数与数列例14已知函数,是方程f(x)=0的两个根,是f(x)的导数;设,(n=1,2,) (1)求的值; (2)证明:对任意的正整数n,
9、都有a;(3)记(n=1,2,),求数列bn的前n项和Sn。解析:(1),是方程f(x)=0的两个根,; (2),=,有基本不等式可知(当且仅当时取等号),同,样,(n=1,2,), (3),而,即,同理,又导数与解析几何例15.已知函数 (I)若函数的图象过原点,且在原点处的切线斜率是,求的值; (II)若函数在区间上不单调,求的取值范围解析 ()由题意得 又 ,解得,或 ()函数在区间不单调,等价于 导函数在既能取到大于0的实数,又能取到小于0的实数 即函数在上存在零点,根据零点存在定理,有 , 即: 整理得:,解得零点例16已知a是实数,函数,如果函数在区间上有零点,求a的取值范围.解:若 , ,显然在上没有零点, 所以 . 令 , 解得 当 时, 恰有一个零点在上; 当,即时,在上也恰有一个零点. 当在上有两个零点时, 则 或解得或综上所求实数的取值范围是 或 .例17 若函数,当时,函数有极值,(1) 求函数的解析式;(2)若函数有3个解,求实数的取值范围例18已知函数与的图象都过点P(2,0),且在点P处有公共切线(1)求f(x)和g(x)的表达式及在点P处的公切线方程;(2)设,其中,求F(x)的单调区间
限制150内