必修一学案(适合任何版本)2.doc
《必修一学案(适合任何版本)2.doc》由会员分享,可在线阅读,更多相关《必修一学案(适合任何版本)2.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、常青藤实验中学 高一数学必修1暑期导学案2.1.1 指数与指数幂的运算(1) 学习目标 1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质. 学习过程 一、课前准备(预习教材P45 P47,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的 ,记作 ; 如果一个数的立方等于a,那么这个数叫做a的 ,记作 . 二、新课导学 学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率
2、为1.25,1990年人口数为a万,则x年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3, 则x年后GDP为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14关系为. 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察:
3、 ,那么就叫4的 ;,那么3就叫27的 ;,那么就叫做的 .依此类推,若,,那么叫做的 .新知:一般地,若,那么叫做的次方根 ( th root ),其中,.简记:. 例如:,则.反思:当n为奇数时, n次方根情况如何?例如:,, 记:.当n为偶数时,正数的n次方根情况? 例如:的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是0,即.试试:,则的4次方根为 ; ,则的3次方根为 .新知:像的式子就叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).试试:计算、.反思:从特殊到一般,、的意义及结果? 结论:. 当
4、是奇数时,;当是偶数时,. 典型例题例1求下类各式的值: (1) ; (2) ; (3); (4) ().变式:计算或化简下列各式.(1); (2).推广: (a0). 动手试试练1. 化简.练2. 化简.三、总结提升 学习小结1. n次方根,根式的概念;2. 根式运算性质. 知识拓展1. 整数指数幂满足不等性质:若,则.2. 正整数指数幂满足不等性质: 若,则; 若,则. 其中N*. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 的值是( ).A. 3 B. 3 C. 3 D. 812.
5、 625的4次方根是( ). A. 5 B. 5 C. 5 D. 253. 化简是( ). A. B. C. D. 4. 化简= .5. 计算:= ; . 课后作业 1. 计算:(1); (2) .2. 计算和,它们之间有什么关系? 你能得到什么结论?3. 对比与,你能把后者归入前者吗?2.1.1 指数与指数幂的运算(2) 学习目标 1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算. 学习过程 一、课前准备(预习教材P46 P47,找出疑惑之处)复习1:一般地,若,则叫做的 ,其中,. 简记为: .像的式子就叫做 ,具有如下运算性质:= ;= ;= .
6、复习2:整数指数幂的运算性质.(1) ;(2) ;(3) .二、新课导学 学习探究探究任务:分数指数幂引例:a0时,则类似可得 ; ,类似可得 .新知:规定分数指数幂如下;.试试:(1)将下列根式写成分数指数幂形式:= ; = ; = .(2)求值:; ; ; .反思: 0的正分数指数幂为 ;0的负分数指数幂为 . 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂指数幂的运算性质: (); ; 典型例题例1 求值:; ;.变式:化为根式.例2 用分数指数幂的形式表示下列各式:(1); (2)
7、; (3).例3 计算(式中字母均正):(1); (2).小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1) ;(2) ;(3).小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思: 的结果?结论:无理指数幂.(结合教材P53利用逼近的思想理解无理指数幂意义) 无理数指数幂是一个确定的实数实数指数幂的运算性质如何? 动手试试练1. 把化成分数指数幂.练2. 计算:(1); (2).三、总结提升 学习小结分数指数幂的意义;分数指数幂与根式的互化;有理指数幂的运算性质. 知识拓展放射性元素衰变的数学模型
8、为:,其中t表示经过的时间,表示初始质量,衰减后的质量为m,为正的常数. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若,且为整数,则下列各式中正确的是( ).A. B. C. D. 2. 化简的结果是( ). A. 5 B. 15 C. 25 D. 1253. 计算的结果是( ).A B D4. 化简= .5. 若,则= . 课后作业 1. 化简下列各式:(1); (2).2. 计算:.2.1.1 指数与指数幂的运算(练习) 学习目标 1. 掌握n次方根的求解;2. 会用分数指数幂表示
9、根式;3. 掌握根式与分数指数幂的运算. 学习过程 一、课前准备(复习教材P45 P48,找出疑惑之处)复习1:什么叫做根式? 运算性质?像的式子就叫做 ,具有性质:= ;= ;= .复习2:分数指数幂如何定义?运算性质? ; .其中 ; ; .复习3:填空. n为 时,. 求下列各式的值: = ; = ;= ;= ; = ; = ;= .二、新课导学 典型例题例1 已知=3,求下列各式的值:(1);(2);(3)补充:立方和差公式.小结: 平方法; 乘法公式; 根式的基本性质(a0)等.注意, a0十分重要,无此条件则公式不成立. 例如,.变式:已知,求:(1); (2).例2从盛满1升纯酒
10、精的容器中倒出升,然后用水填满,再倒出升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结: 方法:摘要审题;探究 结论; 解应用问题四步曲:审题建模解答作答. 动手试试练1. 化简:.练2. 已知x+x-1=3,求下列各式的值.(1); (2).练3. 已知,试求的值.三、总结提升 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用. 知识拓展1. 立方和差公式:;.2. 完全立方公式:;. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 的值为( )
11、. A. B. C. 3 D. 7292. (a0)的值是( ).A. 1 B. a C. D. 3. 下列各式中成立的是( ).A BC D 4. 化简= .5. 化简= . 课后作业 1. 已知, 求的值.2. 探究:时, 实数和整数所应满足的条件.2.1.2 指数函数及其性质(1) 学习目标 1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). 学习过程 一、课前准备(预习教材P49 P52,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1) ;(2)
12、;(3) ; .其中复习2:有理指数幂的运算性质.(1) ;(2) ;(3) .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例: A细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84,那么以时间x年为自变量,残留量y的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义
13、域为R.反思:为什么规定0且1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性作图:在同一坐标系中画出下列函数图象: , 讨论:(1)函数与的图象有什么关系?如何由的图象画出的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或后呢?新知:根据图象归纳指数函数的性质.a10a0,a1)的图象恒过定点( ).A. B. C. D. 3.
14、 指数函数,满足不等式 ,则它们的图象是( ). 4. 比较大小: .5. 函数的定义域为 . 课后作业 1. 求函数y=的定义域.2. 探究:在m,n上,值域?2.1.2 指数函数及其性质(2) 学习目标 1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识. 学习过程 一、课前准备(预习教材P52 P55,找出疑惑之处)复习1:指数函数的形式是 ,其图象与性质如下a10a0,a1)的图象与函数y=bx (b0,b1)的图象关于y轴对称,则有( ).A. ab B. a1)在R上递减C. 若aa,则a1D. 若1,则4. 比较下列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 一学案 适合 任何 版本
限制150内