《二次函数中动点问题.doc》由会员分享,可在线阅读,更多相关《二次函数中动点问题.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.如图,抛物线1 :y=-x2平移得到抛物线,且经过点O(0.0)和点A(4.0),的顶点为点B,它的对称轴与相交于点C,设、与BC围成的阴影部分面积为S,解答下列问题:(1)求表示的函数解析式及它的对称轴,顶点的坐标。(2)求点C的坐标,并直接写出S的值。(3)在直线AC上是否存在点P,使得SPOAS?若存在,求点P的坐标;若不存在,请说明理由。【参考公式:抛物线y=ax2+bx+c 的对称轴是x ,顶点坐标是( ,)】2(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx-2 与x轴交于点A(-1,0)、B(4,0)点M、N在x轴上,点N在点M右侧,MN=2以MN为直角边向上作等腰
2、直角三角形CMN,CMN=90设点M的横坐标为m (1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90后,得到对应线段DN. 当点D在这条抛物线的对称轴上时,求点D的坐标.以DN为直角边作等腰直角三角形DNE, 当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.【参考公式:抛物线(a0)的顶点坐标为】3.如图,在平面直角坐标系中,直线y=-2x+42交x轴与点A,交直线y=x于点B,抛物线分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上(1)求点C、D的纵坐标(2)求a、c的值(3)若Q为线
3、段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长(4)若Q为线段OB或线段AB上的一点,PQx轴,设P、Q两点之间的距离为d(d0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围(参考公式:二次函数图像的顶点坐标为4、如图1,在平面直角坐标系中,已知抛物线经过A(4,0)、B(0,4)、C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的
4、点Q的坐标 图1 图25、如图1,已知点A (-2,4) 和点B (1,0)都在抛物线上(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB 的交点为C,试在x轴上找一个点D,使得以点B、C、D为顶点的三角形与ABC相似 2(1)抛物线经过点A(,0)、B(4,0), 解得抛物线所对应的函数关系式为. (2分)(2)由题意知,点C的坐标为(m,), (3分)点C(m,2)在抛物线上,2,解得,.点 C在这条抛物线上时,的值为或. (5分)(3)由旋转得,点D的坐标为(m,-
5、2). 抛物线的对称轴为直线. 点D在这条抛物线的对称轴上,点D的坐标为. (7分)或或或. (10分) (1) 因为抛物线与x轴交于A(4,0)、C(2,0)两点,设ya(x4)(x2)代入点B(0,4),求得所以抛物线的解析式为(2)如图2,直线AB的解析式为yx4过点M作x轴的垂线交AB于D,那么所以因此当时,S取得最大值,最大值为4(3) 如果以点P、Q、B、O为顶点的四边形是平行四边形,那么PQ/OB,PQOB4设点Q的坐标为,点P的坐标为当点P在点Q上方时,解得此时点Q的坐标为(如图3),或(如图4)当点Q在点P上方时,解得或(与点O重合,舍去)此时点Q的坐标为(4,4) (如图5) 图3 图4 图5满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线上,所以 解得,(2)如图2,由点A (-2,4) 和点B (1,0),可得AB5因为四边形A ABB为菱形,所以A ABB AB5因为,所以原抛物线的对称轴x1向右平移5个单位后,对应的直线为x4因此平移后的抛物线的解析式为图2(3) 由点A (-2,4) 和点B (6,0),可得A B如图2,由AM/CN,可得,即解得所以根据菱形的性质,在ABC与BCD中,BACCBD如图3,当时,解得此时OD3,点D的坐标为(3,0)如图4,当时,解得此时OD,点D的坐标为(,0) 图3 图4
限制150内