2022年空间几何体知识点 .pdf
《2022年空间几何体知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年空间几何体知识点 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结优秀知识点空间几何体多面体棱柱棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1) 侧棱交于一点。侧面都是三角形(2) 平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射
2、影是底面的中心,这样的棱锥叫做正棱锥。正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。(3) 多个特殊的直角三角形esp :a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。基本概念公理 1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理 2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理 3: 过不在同一条直线上的三个点,有
3、且只有一个平面。推论 1: 经过一条直线和这条直线外一点,有且只有一个平面。推论 2:经过两条相交直线,有且只有一个平面。推论 3:经过两条平行直线,有且只有一个平面。公理 4 :平行于同一条直线的两条直线互相平行。等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页名师总结优秀知识点异面直线的定义:不同在任何一个平面内的两条
4、直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为( 0 ,90 ) esp. 空间向量法两异面直线间距离: 公垂线段 (有且只有一条) esp. 空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点 相交直线;( 2)没有公共点 平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行直线在平面内 有无数个公共点直线和平面相交 有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp. 空间向量法 (找平面的法向量)
5、 规定: a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0 角由此得直线和平面所成角的取值范围为0 ,90 最小角定理 : 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp. 直线和平面垂直直线和平面垂直的定义:如果一条直线a 和一个平面内的任意一条直线都垂直,我们就说直线a 和平面互相垂直 .直线 a 叫做平面的垂线,平面叫做直线 a 的垂面。直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线
6、与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行 没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-没有公共点;两个平面相交 - 有一条公共直线。a、平行两个平面平行的判定定理:如果一个平
7、面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角(1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为0 ,180 (3) 二面角的棱:这一条直线叫做二面角的棱。(4) 二面角的面:这两个半平面叫做二面角的面。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页名师总结优秀知识点(5) 二面角的平面角:以二面角的棱上任意一点
8、为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(6) 直二面角:平面角是直角的二面角叫做直二面角。esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。Attention :二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)空间几何练习题1.1 空间几何体的
9、结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个
10、四棱台可以由两个四棱台拼合而成5、下面多面体中有12 条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 11 页名师总结优秀知识点A 1 个B 2 个C 3 个D 4 个二、填空题7、一个棱柱至少有个面,面数最少的棱柱有个顶点,有个棱。8、一个棱柱有10 个顶点,所有侧棱长的和为60,则每条侧棱长为9、把等腰三角形绕底边上的高旋转1800,所得的几何体是10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。图中是一个正方
11、体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面, “程”表示下面。则“祝”“你” “前”分别表示正方体的三、解答题:11、长方体 ABCD A1B1C1D1 中, AB3,BC2,BB11,由 A 到 C1 在长方体表面上的最短距离为多少?12、说出下列几何体的主要结构特征(1)(2)(3)祝你前程似锦A A1 B1 B C C1 D1 D 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页名师总结优秀知识点1.2 空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是()A 两条相交直线B 一条直线C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年空间几何体知识点 2022 空间 几何体 知识点
限制150内