非常好的定积分与微积分基本定理复习资料讲义.doc
《非常好的定积分与微积分基本定理复习资料讲义.doc》由会员分享,可在线阅读,更多相关《非常好的定积分与微积分基本定理复习资料讲义.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-定积分与微积分基本定理复习讲义备考方向要明了考 什 么怎 么 考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题2.考查简单定积分的求解3.考查曲边梯形面积的求解4.与几何概型相结合考查归纳知识整合1定积分(1)定积分的相关概念:在f(x)dx中,a,b分别叫做积分下限与积分上限,区间a,b叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式(2)定积分的几何意义当函数f(x)在区间a,b上恒为正时,定积分f(x)dx的几何意义是由直线xa,xb(ab),y0和曲线yf(x)所围成的曲边梯形的面
2、积(左图中阴影部分)一般情况下,定积分f(x)dx的几何意义是介于x轴、曲线f(x)以及直线xa,xb之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数(3)定积分的基本性质: kf(x)dxkf(x)dx.f1(x)f2(x)dxf1(x)dxf2(x)dx.f(x)dxf(x)dxf(x)dx.探究1.若积分变量为t,则f(x)dx与f(t)dt是否相等?提示:相等2一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在
3、利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算3定积分f(x)g(x)dx(f(x)g(x)的几何意义是什么?提示:由直线xa,xb和曲线yf(x),yg(x)所围成的曲边梯形的面积2微积分基本定理:如果f(x)是区间a,b上的连续函数,并且F(x)f(x),那么f(x)dxF(b)F(a),这个结论叫做微积分基本定理,又叫做牛顿莱布尼兹公式 为了方便,常把F(b)F(a)记成F(x),即 f(x)dxF(x)F(b)F(a)课前预测:1.dx等于()A2ln 2B2ln 2 Cln 2 Dln 22(教材习题改编)一质点运动时速度
4、和时间的关系为V(t)t2t2,质点作直线运动,则此物体在时间1,2内的位移为()A. B. C. D.3(教材习题改编)直线x0,x2,y0与曲线yx2所围成的曲边梯形的面积为_4(教材改编题)dx_.5由y,直线yx所围成的封闭图形的面积为_考点一 利用微积分基本定理求定积分例1利用微积分基本定理求下列定积分:(1)(x22x1)dx;(2)(sin xcos x)dx;(3)x(x1)dx;(4)dx;(5) sin2dx.求定积分的一般步骤:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分;(3)
5、分别用求导公式找到一个相应的原函数;(4)利用牛顿莱布尼兹公式求出各个定积分的值;(5)计算原始定积分的值强化训练:1求下列定积分:(1)|x1|dx;(2) dx.考点二 利用定积分的几何意义求定积分例2dx_.变式:在本例中,改变积分上限,求dx的值 利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小强化训练:2(2014福建模拟)已知函数f(x)(cos tsin t)dt(x0),则f(x)的最大值为_考点三:利用定积分求平面图形的面积例3(2014山东高考
6、)由曲线y,直线yx2及y轴所围成的图形的面积为()A. B4C. D6变式训练:若将“yx2”改为“yx2”,将“y轴”改为“x轴”,如何求解?利用定积分求曲边梯形面积的步骤(1)画出曲线的草图(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限(3)将“曲边梯形”的面积表示成若干个定积分的和或差(4)计算定积分,写出答案强化训练:3 (2014郑州模拟)如图,曲线yx2和直线x0,x1,y所围成的图形(阴影部分)的面积为()A.B.C.D.考点四:定积分在物理中的应用例4列车以72 km/h的速度行驶,当制动时列车获得加速度a0.4 m/s2,问列车应在进站前多长时间,以及离车站
7、多远处开始制动?1变速直线运动问题如果做变速直线运动的物体的速度v关于时间t的函数是vv(t)(v(t)0),那么物体从时刻ta到tb所经过的路程为v(t)dt;如果做变速直线运动的物体的速度v关于时间t的函数是vv(t)(v(t)0),那么物体从时刻ta到tb所经过的路程为v(t)dt.2变力做功问题物体在变力F(x)的作用下,沿与力F(x)相同方向从xa到xb所做的功为F(x)dx.强化训练:4一物体在力F(x)(单位:N)的作用下沿与力F(x)相同的方向运动了4米,力F(x)做功为()A44 JB46 JC48 J D50 J1个定理微积分基本定理由微积分基本定理可知求定积分的关键是求导
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 非常好 积分 微积分 基本 定理 复习资料 讲义
限制150内