高一数学函数解析汇报式定义域值域解题方法(含问答详解).doc





《高一数学函数解析汇报式定义域值域解题方法(含问答详解).doc》由会员分享,可在线阅读,更多相关《高一数学函数解析汇报式定义域值域解题方法(含问答详解).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-*个 性 化 辅 导 教 案授课时间:授课时段:科目: 数学课题: 函数学生:授课老师: M教学目标课堂检测听课及知识掌握情况反馈:教学需:加快 保持 放慢 增加内容教学反思及下节课内容安排学生意见教学过程(内容)高一数学函数解析式、定义域、值域解题方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数
2、fg(x)的表达式,求f(x)的表达式时可以令tg(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(x),或f(x)和f(1/x)的一个方程,则可以x代换x(或1/x),构造出另一个方程,解此方程组,消去f(x)(或f(1/x)即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所
3、在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数yfg(x)的定义域的求解,应先由yf(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出yg(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各
4、个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。例1. 已知,试求。解:设,则,代入条件式可得:,t1。故得:。说明:要注意转换后变量范围的变化,必须确保等价变形。2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。例2. (1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。(2)由条件式,以x代x则得:,与条件式联立,消去,则得:。说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析
5、式确定,不需要另外给出。例4. 求下列函数的解析式:(1)已知是二次函数,且,求;(2)已知,求,;(3)已知,求;(4)已知,求。【思路分析】【题意分析】(1)由已知是二次函数,所以可设,设法求出即可。(2)若能将适当变形,用的式子表示就容易解决了。(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。(4),同时使得有意义,用代替建立关于,的两个方程就行了。【解题过程】设,由得,由,得恒等式,得。故所求函数的解析式为。(2),又。(3)设,则所以。(4)因为 用代替得 解式得。【题后思考】求函数解析式常见的题型有:(1)解析式类型已知的,如本例,一般用待定系数法。对于二次函数问题要注
6、意一般式,顶点式和标根式的选择;(2)已知求的问题,方法一是配凑法,方法二是换元法,如本例(2)(3);(3)函数方程问题,需建立关于的方程组,如本例(4)。若函数方程中同时出现,则一般将式中的用代替,构造另一方程。特别注意:求函数的解析式时均应严格考虑函数的定义域。二:求函数定义域1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。例3. 求的定义域。解:由题意知:,从而解得:x2且x4.故所求定义域为:x|x2且x4。例2. 求下列函数的定义域:(1); (2)【思路分析】【题意分析】求
7、函数的定义域就是求自变量的取值范围,应考虑使函数解析式有意义,这里需考虑分母不为零,开偶次方被开方数为非负数。【解题过程】(1)要使函数有意义,则,在数轴上标出,即。故函数的定义域为.当然也可表示为。(2)要使函数有意义,则,从而函数的定义域为。【题后思考】求函数的定义域的问题可以归纳为解不等式的问题,如果一个函数有几个限制条件时,那么定义域为解各限制条件所得的的范围的交集,利用数轴可便于解决问题。求函数的定义域时不应化简解析式;定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“”连接。2、求分段函数的定义域:对各个区间求并集。例4. 已知函数由下表给
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 函数 解析 汇报 定义域 值域 解题 方法 法子 问答 详解

限制150内