高中数学《二项式定理》公开课教案设计.docx
《高中数学《二项式定理》公开课教案设计.docx》由会员分享,可在线阅读,更多相关《高中数学《二项式定理》公开课教案设计.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学二项式定理公开课教案设计 二项式定理公开课教案 (第一教时) 一、教学目标 1、理解杨辉三角形。其行为样例是:(1)能用不完全归纳法写出杨辉三角形;(2)能根据杨辉三角形对)6()(+n b a n 的二项式进行展开。 2、掌握二项式定理。其行为样例是:(1)能根据组合思想及不完全归纳法猜出二项展 开式的系数),2,1,0(*=N n n r C r n 以及二项展开式的通项r r n r n r b a C T -+=1;(2)能正确区分二项式系数和某一项的系数;(3)能应用定理对任意给定的一个二项式进行展开、并求出它特定的项或系数。 二、教学重点与难点 1、重点:二项式定理的发现、
2、理解和初步应用。 2、难点:二项式定理的发现。 (教具:多媒体课件) 三、教学过程 1、情景设置 问题1:若今天是星期一,再过30天后是星期几?怎么算? 预期回答:星期三,将问题转化为求“30被7除后算余数”是多少。 问题2:若今天是星期一,再过)(8* N n n 天后是星期几?怎么算? 预期回答:将问题转化为求“n n )17(8+=被7除后算余数”是多少,也就是研究)()(*+N n b a n 的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。 (设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、
3、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。) 2、新授 第一步:让学生展开 b a b a +=+1)( 2222)(b ab a b a +=+; 32232333)()()(b ab b a a b a b a b a +=+=+; 43223434464)()()(b ab b a b a a b a b a b a +=+=+ 5432234555510105)()()(b ab b a b a b a a b a b a b a +=+=+ 教师将以上各展开式的系数整理成如下模型 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 1
4、0 5 1 问题1:请你找出以上数据上下行之间的规律。 预期回答:下一行中间的各个数分别等于上一行对应位置的相邻两数之和。 问题2:以5 )(b a +的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。 预期回答:展开式每一项的次数按某一字母降幂排列、另一字母升幂排列,且两个字母的和等于乘方指数;展开式的项数比乘方指数多1项;展开式中第二项的系数等于乘方指数。 初步归纳出下式: ()()()()()n n n n n n b b a b a b a a b a +=+-K 33221)( () (设计意图:以上呈现给学生的由系数排成的“三角形”,起
5、到了“先行组织者”的作用,虽然,教师将此“三角形”模型以定论的形式呈现给学生,但是,它毕竟不是最后的结果,而是一种寻找系数规律的有效工具,便于学生将新的学习材料同自己原有的认知结构联系起来,并纳入到原有认知结构中而出现意义。这样的学习是有意义的而不是机械的,是主动建构的而不是被动死记的心理过程。) 练习:展开7)(b a + 教师作阶段性评价,告诉学生以上的系数表是我国宋代数学家杨辉的杰作,称为杨辉三角形,这项发明比欧洲人帕斯卡三角早400多年。你们今天做了与杨辉同样的探索,以鼓励学生探究的热情,并激发作为一名文明古国的后代的民族自豪感和爱国热情。 第二步:继续设疑 如何展开100)(b a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式定理 高中数学 二项式 定理 公开 教案设计
限制150内