2022年等差数列的教学设计 .pdf





《2022年等差数列的教学设计 .pdf》由会员分享,可在线阅读,更多相关《2022年等差数列的教学设计 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载等差数列教学设计精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页学习必备欢迎下载等差数列一、教学内容分析本节课是普通高中课程标准实验教科书数学5 (人教版)第二章数列第二节等差数列第一课时。数列是高中数学重要内容之一,它不仅有着广泛的实际应用, 而且起着承前启后的作用。一方面 , 数列作为一种特殊的函数与函数思想密不可分;另一方面 ,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今
2、后学习等比数列提供了“联想” 、 “类比”的思想方法。二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习, 大部分学生知识经验已较为丰富, 具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学, 从而促进思维能力的进一步提高。三、设计思想1教法诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。讲练结合法:可以及时巩固所
3、学内容,抓住重点,突破难点。2学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题) 概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点, 推导出等差数列的通项公式; 可以对各种能力的同学引导认识多元的推导思维方法。用多种方法对等差数列的通项公式进行推导。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页学习必备欢迎下载在引导分析时,留出“空白” ,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。四、教学目标通过本节课的学习使学生能理解并掌握
4、等差数列的概念,能用定义判断一个数列是否为等差数列, 引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、 分析、归纳、推理的能力, 在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。五、教学重点与难点重点:等差数列的概念。等差数列的通项公式的推导过程及应用。难点:理解等差数列“等差”的特点及通项公式的含义。理解等差数列是一种函数模型。关键:等差数列概念的理解及由此得到的“性质”的方法。六、教学过程教学环节情境设计和学习任务学生活动设计意图创设情景在南北朝时期张邱建
5、算经中,有一道题 今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何,及未到三人复应得金几何 。这个问题该怎样解决呢?倾听课堂引入探索由学生观察分析并得出答案:观察分析,发表各自的意见引向课题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 11 页学习必备欢迎下载研究在现实生活中,我们经常这样数数,从 0 开始,每隔 5 数一次,可以得到数列:0,5,_,_,_,_,水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水
6、库的水位为 18cm , 自然放水每天水位降低2.5m,最低降至 5m 。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m ) :18,15.5,13,10.5 ,8,5.5 发现规律思考:同学们观察一下上面的这两个数列:0,5,10,15,20,18,15.5 ,13,10.5 ,8,5.5 看这些数列有什么共同特点呢?观察分析并得出答案 : 引导学生观察相邻两项间的关系,得到:对于数列, 从第 2 项起,每一项与前一项的 差 都等于5 ;对于数列,从第 2 项起,每一项与前一项的 差 都等于-2.5 ;由学生归纳和概括出,以上两个数列从第2 项起,每一项与前一
7、项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点) 。通过分析,激发 学 生 学 习的 探 究 知 识的兴趣,引导揭 示 数 列 的共性特点。总结提高 等差数列的概念 对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下学生认真阅读课本相关概念,找出关键字。通 过 学 生 自己阅读课本,找出关键字,提 高 学 生 的精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页学习必备欢迎下载个定义:等差数列: 一般地,如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常
8、数,那么这个数列就叫做等差数列 。这个常数叫做等差数列的公差,公差通常用字母d 表示。那么对于以上两组等差数列, 它们的公差依次是5,5,-2.5 。阅 读 水 平 和思 维 概 括 能力,学会抓重点。提问: 如果在a与 b 中间插入一个数 A,使a,A, b 成等差数列数列,那么A应满足什么条件?由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道: A-a=b-A 所以就有2baA让 学 生 参 与到 知 识 的 形成过程中,获得 数 学 学 习的成就感。由三个数 a,A,b 组成的等差数列可以看成最简单的等差数列,这时,A叫做 a 与 b 的等差中项 。不难发现,在一个等差数
9、列中,从第 2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列: 1,3,5,7,9,11,13中 5 是 3 和 7 的等差中项,1 和 9 的等差中项。9 是 7 和 11 的等差中项, 5 和 13 的等差中项。看来,73645142,aaaaaaaa从而可得在一等差数列中, 若 m+n=p+q 深入探究, 得到更一般化的结论引 领 学 习 更深入的探究,提 高 学 生 的学习水平。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 11 页学习必备欢迎下载则qpnmaaaa总结提高 等差数列的通项公式 对
10、于以上的等差数列, 我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。、我们是通过研究数列na的第 n项与序号 n 之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这三组等差数列的通项公式。由学生经过分析写 出 通项公式:这个数列的第一项是5,第 2项是 10(=5+5) ,第 3 项是 15( =5+5+5) , 第4 项 是20(=5+5+5+5 ) ,由此可以猜想得到这个数列的通项公式是nan5 这个数列的第一项是18, 第2 项是 15.5(=18-2.5 ) ,第 3项是 13(=18-2.5 2) ,第 4项是 10.5(=18-2.5 3)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年等差数列的教学设计 2022 等差数列 教学 设计

限制150内