2019数学新设计人教A选修1-2课件:第三章 数系的扩充与复数的引入 3.1.1 .ppt
《2019数学新设计人教A选修1-2课件:第三章 数系的扩充与复数的引入 3.1.1 .ppt》由会员分享,可在线阅读,更多相关《2019数学新设计人教A选修1-2课件:第三章 数系的扩充与复数的引入 3.1.1 .ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1.1数系的扩充和复数的概念,1.复数的概念及其表示(1)虚数单位满足i2=-1的i叫做虚数单位.(2)复数的定义形如a+bi(a,bR)的数叫做复数,其中i是虚数单位,全体复数所构成的集合C叫做复数集.(3)复数的表示复数通常用字母z表示,即z=a+bi(a,bR),这一表示形式叫做复数的代数形式,a与b分别叫做复数z的实部与虚部.名师点拨1.对于复数z=a+bi(a,bR),应注意其虚部是b,而不是bi.2.对于复数z=a+bi,只有当a,bR时,才能得出z的实部为a,虚部为b,若没有a,bR的条件,则不能说a,b就是z的实部与虚部.,2.复数相等的充要条件在复数集C=a+bi|a,b
2、R中任取两个复数a+bi,c+di(a,b,c,dR),规定a+bi与c+di相等的充要条件是a=c,且b=d.名师点拨两个复数的比较问题(1)若两个复数全是实数,则可以比较大小,反之,若两个复数能够比较大小,说明这两个复数都是实数;(2)当两个复数不全是实数时,就不能比较它们的大小,只能说它们相等还是不相等;(3)根据两个复数相等的充要条件,如果a=c,b=d两式中至少有一个不成立,那么就有a+bic+di.,【做一做2】若x,yR,且2016+yi=x-2017i,则实数x=,y=.解析:由复数相等的充要条件可得所以x=2016,y=-2017.答案:2016-2017,名师点拨1.形如z
3、=bi的数不一定是纯虚数,只有当bR且b0时,bi才是纯虚数,否则不一定是纯虚数.2.若z是纯虚数,可设z=bi(bR,b0);若z是虚数,可设z=a+bi(a,bR且b0);若z是复数,可设z=a+bi(a,bR).,解析:根据纯虚数的定义知,是纯虚数.答案:C,思考辨析判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)若a,b是实数,则z=a+bi是虚数.()(2)在复数z=x+yi(x,yR)中,若x=0,则复数z为纯虚数.()(3)复数可以分为两大类:实数与虚数.()(4)若复数z等于0,则其实部与虚部都等于0.()(5)两个复数一定不能比较大小.()答案:(1)(
4、2)(3)(4)(5),探究一,探究二,探究三,思维辨析,对复数相关概念的理解【例1】下列说法中正确的是()A.复数由实数、虚数、纯虚数构成B.若复数z=x+yi(x,yR)是虚数,则必有x0C.在复数z=x+yi(x,yR)中,若x0,则复数z一定不是纯虚数D.若a,bR且ab,则a+ib+i思路分析:根据复数及其相关概念进行分析判断,注意列举反例.解析:选项A错,复数由实数与虚数构成,在虚数中又分为纯虚数和非纯虚数;选项B错,若复数z=x+yi(x,yR)是虚数,则必有y0,但可以x=0;选项C正确,若复数z=x+yi(x,yR)是纯虚数,必有x=0,y0,因此只要x0,复数z一定不是纯虚
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019数学新设计人教A选修1-2课件:第三章 数系的扩充与复数的引入 3.1.1 2019 数学 设计人 选修 课件 第三 扩充 复数 引入 3.1
限制150内