2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第一章 导数及其应用1.3.2(一) .docx
《2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第一章 导数及其应用1.3.2(一) .docx》由会员分享,可在线阅读,更多相关《2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第一章 导数及其应用1.3.2(一) .docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、13.2函数的极值与导数(一)学习目标1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件知识点一函数的极值点和极值思考观察函数yf(x)的图象,指出其极大值点和极小值点及极值答案极大值点为e,g,i,极大值为f(e),f(g),f(i);极小值点为d,f,h,极小值为f(d),f(f),f(h)梳理(1)极小值点与极小值若函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0,而且在点xa附近的左侧f(x)0,就把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值(
2、2)极大值点与极大值若函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0,而且在点xb附近的左侧f(x)0,右侧f(x)0,在x0的右侧函数单调递减,即f(x)0,那么f(x0)是极大值;如果在x0附近的左侧函数单调递减,即f(x)0,那么f(x0)是极小值(2)求可导函数f(x)的极值的步骤确定函数的定义区间,求导数f(x);求方程f(x)0的根;列表;利用f(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值1导数为0的点一定是极值点()2函数的极大值一定大于极小值()3函数yf(x)一定有极大值和极小值()4极值点处的导数一定为0.
3、()类型一求函数的极值点和极值例1求下列函数的极值(1)f(x)2;(2)f(x).考点函数在某点处取得极值的条件题点不含参数的函数求极值问题解(1)函数f(x)的定义域为R.f(x).令f(x)0,得x1或x1.当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,1)1(1,)f(x)00f(x)极小值极大值由上表可以看出,当x1时,函数有极小值,且极小值为f(1)3;当x1时,函数有极大值,且极大值为f(1)1.(2)函数f(x)的定义域为(0,),且f(x).令f(x)0,解得xe.当x变化时,f(x)与f(x)的变化情况如下表:x(0,e)e(e,)f(x)0f(x)极大
4、值因此,xe是函数的极大值点,极大值为f(e),没有极小值反思与感悟函数极值和极值点的求解步骤(1)确定函数的定义域(2)求方程f(x)0的根(3)用方程f(x)0的根顺次将函数的定义域分成若干个小开区间,并列成表格(4)由f(x)在方程f(x)0的根左右的符号,来判断f(x)在这个根处取极值的情况特别提醒:当实数根较多时,要充分利用表格,使极值点的确定一目了然跟踪训练1求下列函数的极值点和极值(1)f(x)x3x23x3;(2)f(x)x2ex.考点函数在某点处取得极值的条件题点不含参数的函数求极值问题解(1)f(x)x22x3.令f(x)0,得x11,x23,当x变化时,f(x),f(x)
5、的变化情况如下表:x(,1)1(1,3)3(3,)f(x)00f(x)极大值极小值由上表可以看出,当x1时,函数有极大值,且极大值f(1),当x3时,函数有极小值,且极小值f(3)6.(2)函数f(x)的定义域为R.f(x)2xexx2exx(2x)ex.令f(x)0,得x0或x2.当x变化时,f(x),f(x)的变化情况如下表:x(,0)0(0,2)2(2,)f(x)00f(x)极小值极大值由上表可以看出,当x0时,函数有极小值,且极小值为f(0)0.当x2时,函数有极大值,且极大值为f(2)4e2.例2已知函数f(x)(x2ax2a23a)ex(xR),当实数a时,求函数f(x)的单调区间
6、与极值考点函数在某点处取得极值的条件题点含参数求极值问题解f(x)x2(a2)x2a24aex.令f(x)0,解得x2a或xa2,由a知2aa2.分以下两种情况讨论:若a,则2aa2.当x变化时,f(x),f(x)的变化情况如下表:x(,2a)2a(2a,a2)a2(a2,)f(x)00f(x)极大值极小值所以f(x)在(,2a),(a2,)上是增函数,在(2a,a2)上是减函数,函数f(x)在x2a处取得极大值f(2a),且f(2a)3ae2a,函数f(x)在xa2处取得极小值f(a2),且f(a2)(43a)ea2.若aa2.当x变化时,f(x),f(x)的变化情况如下表:x(,a2)a2
7、(a2,2a)2a(2a,)f(x)00f(x)极大值极小值所以f(x)在(,a2),(2a,)上是增函数,在(a2,2a)上是减函数,函数f(x)在xa2处取得极大值f(a2),且f(a2)(43a)ea2,函数f(x)在x2a处取得极小值f(2a),且f(2a)3ae2a.反思与感悟讨论参数应从f(x)0的两根x1,x2相等与否入手进行跟踪训练2已知函数f(x)xaln x(aR)(1)当a2时,求曲线yf(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值考点函数在某点处取得极值的条件题点含参数求极值问题解函数f(x)的定义域为(0,),f(x)1.(1)当a2时,f(x)
8、x2ln x,f(x)1(x0),因而f(1)1,f(1)1.所以曲线yf(x)在点A(1,f(1)处的切线方程为y1(x1),即xy20.(2)由f(x)1,x0,知当a0时,f(x)0,函数f(x)为(0,)上的增函数,函数f(x)无极值;当a0时,由f(x)0,解得xa.又当x(0,a)时,f(x)0,从而函数f(x)在xa处取得极小值,且极小值为f(a)aaln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在xa处取得极小值aaln a,无极大值类型二利用函数的极值求参数例3(1)已知函数f(x)的导数f(x)a(x1)(xa),若f(x)在xa处取到极大值,
9、则a的取值范围是()A(,1) B(0,)C(0,1) D(1,0)(2)已知函数f(x)x33ax2bxa2在x1时有极值0,则a_,b_.考点利用导数研究函数的极值题点已知极值点求参数答案(1)D(2)29解析(1)若a1,因为f(x)a(x1)(xa),所以f(x)在(,a)上单调递减,在(a,1)上单调递增,所以f(x)在xa处取得极小值,与题意不符;若1a0,则f(x)在(1,a)上单调递减,在(a,)上单调递增,与题意不符,故选D.(2)因为f(x)在x1时有极值0,且f(x)3x26axb,所以即解得或当a1,b3时,f(x)3x26x33(x1)20,所以f(x)在R上为增函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第一章 导数及其应用1.3.2一 2018 2019 数学 新导学 笔记 选修 人教 全国 通用版 讲义 第一章 导数 及其 应用
链接地址:https://www.taowenge.com/p-2672885.html
限制150内