2019数学新设计北师大选修2-1课件:第一章 常用逻辑用语 1.2 .ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2019数学新设计北师大选修2-1课件:第一章 常用逻辑用语 1.2 .ppt》由会员分享,可在线阅读,更多相关《2019数学新设计北师大选修2-1课件:第一章 常用逻辑用语 1.2 .ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2充分条件与必要条件,一,二,三,四,思考辨析,一、充分条件,名师点拨定义中pq,即如果具备了条件p,就可以保证结论q成立,所以p是q的充分条件;从集合的角度来认识充分条件,若p表示的集合为A,q表示的集合为B,pq,就有AB.【做一做1】“x5”是“xB”是“sinAsinB”的条件.,解析:在三角形中由大角对大边可知ABab,再结合正弦定理,AsinB;反之,仍然结合正弦定理及大边对大角可得出sinAsinBAB.因此在ABC中,“AB”是“sinAsinB”的充要条件.,答案:充要,一,二,三,四,思考辨析,四、充分、必要条件的四种情形设原命题为“若p,则q”,则其逆命题为“若q,则p”
2、,得p与q的关系有以下四种情形:,一,二,三,四,思考辨析,名师点拨如果把p研究的范围看成集合A,把q研究的范围看成集合B,则可得下表:,一,二,三,四,思考辨析,【做一做4】设点P(x,y),则“x=2,且y=-1”是“点P在直线l:x+y-1=0上”的条件.解析:将(2,-1)代入直线方程,符合方程,即“x=2且y=-1”可推出“点P在直线l:x+y-1=0上”;而点P在直线l上,则点P不一定就是(2,-1)点,即“点P在直线l:x+y-1=0上”推不出“x=2且y=-1”.故“x=2且y=-1”是“点P在直线l:x+y-1=0上”的充分而不必要条件.答案:充分而不必要,一,二,三,四,思
3、考辨析,判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)如果p是q的充分条件,那么命题“若p,则q”不一定为真.()(2)如果p是q的充分条件,那么q就是p的必要条件.()(3)如果p是q的必要条件,那么p是唯一的.()(4)如果p是q的充要条件,那么q也是p的充要条件.(),探究一,探究二,探究三,思维辨析,充分条件、必要条件和充要条件的判断【例1】指出下列各组命题中,p是q的什么条件(充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件).(1)p:数a能被6整除,q:数a能被3整除;(2)p:x1,q:x21;(3)p:ABC有两个角相等,q:ABC是正三
4、角形;(4)p:|ab|=ab,q:ab0;(5)在ABC中,p:AB,q:BCAC;(6)p:a=3,q:(a+2)(a-3)=0;(7)p:a2,q:a5;(8)p:a0时,有|ab|=ab,即qp.所以p是q的必要不充分条件.,探究一,探究二,探究三,思维辨析,(5)在ABC中,ABBCAC.所以p是q的充要条件.(6)a=3(a+2)(a-3)=0,但(a+2)(a-3)=0a=3.所以p是q的充分不必要条件.(7)a2a5,但a5a2,所以p是q的必要不充分条件.,反思感悟充分条件、必要条件、充要条件的判断方法1.定义法:(1)分清命题的条件和结论:分清哪个是条件,哪个是结论.(2)
5、找推式:判断“pq”及“qp”的真假.(3)根据推式及条件得出结论.2.集合法:写出集合A=x|p(x)及B=x|q(x),利用集合间的包含关系进行判断.,探究一,探究二,探究三,思维辨析,变式训练1(1)下列“若p,则q”形式的命题中,p是q的充分条件的是(),D.若xy,则x2y2(2)“a=-2”是“直线l1:(a+1)x+y-2=0与直线l2:ax+(2a+2)y+1=0互相垂直”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件,探究一,探究二,探究三,思维辨析,解析:(1)B项中,x2=1x=1或x=-1;C项中,当x=yy2,所以B,C,D中p不是q的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019数学新设计北师大选修2-1课件:第一章 常用逻辑用语 1.2 2019 数学 设计 北师大 选修 课件 第一章 常用 逻辑 用语
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内