2020届高考数学总复习课时跟踪练四十三空间点直线平面之间的位置关系文.doc
《2020届高考数学总复习课时跟踪练四十三空间点直线平面之间的位置关系文.doc》由会员分享,可在线阅读,更多相关《2020届高考数学总复习课时跟踪练四十三空间点直线平面之间的位置关系文.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时跟踪练(四十三)A组基础巩固1已知直线a和平面,l,a,a,且a在,内的射影分别为直线b和c,则直线b和c的位置关系是()A相交或平行 B相交或异面C平行或异面 D相交、平行或异面解析:依题意,直线b和c的位置关系可能是相交、平行或异面答案:D2已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的 ()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解析:若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分
2、不必要条件答案:A3若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交解析:由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交答案:D4.(2019邯郸调研)如图,在三棱锥-SABC中,G1,G2分别是SAB和SAC的重心,则直线G1G2与BC的位置关系是()A相交B平行C异面D以上都有可能解析:连接SG1并延长交AB与M,连接SG2并延长交AC于N,连接MN(图略)由题意知SM为SAB的中线,且SG1SM
3、,SN为SAC的中线,且SG2SN,所以在SMN中,所以G1G2MN,易知MN是ABC的中位线,所以MNBC,因此可得G1G2BC,即直线G1G2与BC的位置关系是平行故选B.答案:B5(2019南永州模拟)三棱锥A-BCD的所有棱长都相等,M,N分别是棱AD,BC的中点,则异面直线BM与AN所成角的余弦值为()A. B. C. D.解析:连接DN,取DN的中点O,连接MO,BO,因为M是AD的中点,所以MOAN,所以BMO(或其补角)是异面直线BM与AN所成的角,设三棱锥A-BCD的所有棱长为2,则ANBMDN,则MOANNODN,则BO,在BMO中,由余弦定理得cos BMO,所以异面直线
4、BM与AN所成角的余弦值为.故选D.答案:D6若平面,相交,在,内各取两点,这四点都不在交线上,这四点能确定_个平面解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个平面答案:1或47.(2019重庆模拟)如图,四边形AB-CD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为_解析:如图,将原图补成正方体ABCD-QGHP,连接GP,则GPBD,所以APG为异面直线AP与BD所成的角,在AGP中,AGGPAP,所以APG.答案:8.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:ABEF;AB与CM所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 复习 课时 跟踪 十三 空间 直线 平面 之间 位置 关系
限制150内