2019年高考数学高考题和高考模拟题分章节汇编专题07平面向量理.docx
《2019年高考数学高考题和高考模拟题分章节汇编专题07平面向量理.docx》由会员分享,可在线阅读,更多相关《2019年高考数学高考题和高考模拟题分章节汇编专题07平面向量理.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题07 平面向量1【2019年高考全国I卷理数】已知非零向量a,b满足,且b,则a与b的夹角为ABCD【答案】B【解析】因为b,所以=0,所以,所以=,所以a与b的夹角为,故选B【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为2【2019年高考全国II卷理数】已知=(2,3),=(3,t),=1,则=A3B2C2D3【答案】C【解析】由,得,则,故选C【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大3【2019年高考北京卷理数】设点A,B,C不共线,则“与的夹角为锐角”是“”的A充分而
2、不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】与的夹角为锐角,所以,即,因为,所以|+|;当|+|成立时,|+|2|-|20,又因为点A,B,C不共线,所以与的夹角为锐角.故“与的夹角为锐角”是“|+|”的充分必要条件,故选C【名师点睛】本题考查充要条件的概念与判断平面向量的模夹角与数量积,同时考查了转化与化归数学思想.4【2019年高考全国III卷理数】已知a,b为单位向量,且ab=0,若,则_.【答案】【解析】因为,所以,所以,所以【名师点睛】本题主要考查平面向量的数量积、向量的夹角渗透了数学运算、直观想象素养使用转化思想得出答案5【2019年高考天津卷
3、理数】在四边形中,点在线段的延长线上,且,则_【答案】【解析】建立如图所示的直角坐标系,DAB=30,则,.因为,所以,因为,所以,所以直线的斜率为,其方程为,直线的斜率为,其方程为.由得,所以.所以.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.6【2019年高考江苏卷】如图,在中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点.若,则的值是_.【答案】.【解析】如图,过点D作DF/CE,交AB于点F,由BE=2EA,D为BC的中点,知BF=FE=EA,AO=OD,得即故【名师点睛】本题考查在三角形中平面向量的数量积运算,
4、渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.7【2019年高考浙江卷】已知正方形的边长为1,当每个取遍时,的最小值是_;最大值是_.【答案】0;.【解析】以分别为x轴、y轴建立平面直角坐标系,如图.则,令0.又因为可取遍,所以当时,有最小值.因为和的取值不相关,或,所以当和分别取得最大值时,y有最大值,所以当时,有最大值.故答案为0;.【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.8【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形中,,若点,分别是,的中点,则A4B3C2D1【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 考题 高考 模拟 章节 汇编 专题 07 平面 向量
限制150内