2020版《微点教程》高考人教A版理科数学一轮复习文档:第九章 第三节 用样本估计总体 .docx
《2020版《微点教程》高考人教A版理科数学一轮复习文档:第九章 第三节 用样本估计总体 .docx》由会员分享,可在线阅读,更多相关《2020版《微点教程》高考人教A版理科数学一轮复习文档:第九章 第三节 用样本估计总体 .docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三节用样本估计总体2019考纲考题考情1用样本的频率分布估计总体分布(1)作频率分布直方图的步骤。求极差(即一组数据中最大值与最小值的差)。决定组距与组数。将数据分组。列频率分布表。画频率分布直方图。(2)频率分布折线图和总体密度曲线。频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图。总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图会越来越接近于一条光滑曲线,即总体密度曲线。(3)茎叶图。茎是指中间的一列数,叶是从茎的旁边生长出来的数。2用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数。(2)中位数:将
2、数据按大小顺序排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数。(3)平均数:,反映了一组数据的平均水平。(4)标准差:是样本数据到平均数的一种平均距离,s。(5)方差:s2(x1)2(x2)2(xn)2(xn是样本数据,n是样本容量,是样本平均数)。1频率分布直方图中各小矩形的面积之和为1。2频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数。(2)中位数左边和右边的小长方形的面积和是相等的。(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和。 3平均数、方差的公
3、式推广(1)若数据x1,x2,xn的平均数为,那么mx1a,mx2a,mx3a,mxna的平均数是ma。(2)数据x1,x2,xn的方差为s2。数据x1a,x2a,xna的方差也为s2;数据ax1,ax2,axn的方差为a2s2。 一、走进教材1(必修3P65例题改编)如图是100位居民月均用水量的频率分布直方图,则月均用水量为2,25)范围内的居民数有_人。解析由频率分布直方图可知,月均用水量为2,25)范围内的居民所占频率为:0505025,所以月均用水量为2,25)范围内的居民数为10002525。答案252(必修3P82A组T6改编)甲、乙两台机床同时生产一种零件,10天中,两台机床每
4、天出的次品数分别是:甲0102203124乙2311021101则机床性能较好的为_。解析因为甲15,乙12,s165,s076,所以ss,所以乙机床性能较好。答案乙二、走近高考3(2018江苏高考)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为_。解析由茎叶图可得分数的平均数为90。答案90 4(2017山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)。若这两组数据的中位数相等,且平均值也相等,则x与y的值分别为()A3,5 B5,5C3,7 D5,7解析由两组数据的中位数相等可得6560y,解得y5,又它们的平均值相等,所
5、以56626574(70x)(5961676578),解得x3。答案A三、走出误区微提醒:平均数与方差的性质理解出错;中位数、众数、平均数的求法不清导致出错。5若数据x1,x2,x3,xn的平均数5,方差s22,则数据3x11,3x21,3x31,3xn1的平均数和方差分别为()A5,2 B16,2C16,18 D16,9解析因为x1,x2,x3,xn的平均数为5,所以5,所以135116,因为x1,x2,x3,xn的方差为2,所以3x11,3x21,3x31,3xn1的方差是32218。故选C。答案C6为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如
6、图所示,假设得分的中位数为m,众数为n,平均数为,则m,n,的大小关系为_。(用“”连接)解析由图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m55;又5出现次数最多,故n5;597。故nm。答案nm考点一 频率分布直方图【例1】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:20,30),30,40),80,90。并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分
7、数在区间40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等。试估计总体中男生和女生人数的比例。解(1)根据频率分布直方图可知,样本中分数不小于70的频率为(002004)1006,所以样本中分数小于70的频率为10604。所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计值为04。(2)根据题意,样本中分数不小于50的频率为(001002004002)1009,故样本中分数小于50的频率为01,故分数在区间40,50)内的人数为1000155。所以总体中分数在区间40,50)内的人数估计为40020。(3)由题意可知,样本中分
8、数不小于70的学生人数为(002004)1010060。所以样本中分数不小于70的男生人数为6030。所以样本中的男生人数为30260,女生人数为1006040,男生和女生人数的比例为604032。所以根据分层抽样原理,总体中男生和女生人数的比例估计为32。1绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是,而不是频率。2与频率分布直方图计算有关的两个关系式(1)组距频率;(2)频率,此关系式的变形为样本容量,样本容量频率频数。 【变式训练】(2019贵阳监测考试)在某中学举行的环保知识竞赛中,将三个年级
9、参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80100分的学生人数是()A15 B18 C20 D25解析根据频率分布直方图,得第二小组的频率是0041004,因为频数是40,所以样本容量是100,又成绩在80100分的频率是(00100005)10015,所以成绩在80100分的学生人数是10001515。故选A。答案A考点二 茎叶图【例2】(2019郑州质量预测)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的
10、茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A B2 C D9解析由甲班学生成绩的中位数是81,可知81为甲班7名学生的成绩按从小到大的顺序排列的第4个数,故x1。由乙班学生成绩的平均数为86,可得(10)(6)(4)(y6)57100,解得y4。由x,G,y成等比数列,可得G2xy4,由正实数a,b满足a,G,b成等差数列,可得G2,ab2G4,所以(54)(当且仅当b2a时取等号)。故的最小值为。故选C。答案C1由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微点教程 2020版微点教程高考人教A版理科数学一轮复习文档:第九章 第三节用样本估计总体 2020 教程 高考 理科 数学 一轮 复习 文档 第九 三节 样本 估计 总体
限制150内