2020届高考文科数学一轮(新课标通用)训练检测:单元质量测试(六) .doc
《2020届高考文科数学一轮(新课标通用)训练检测:单元质量测试(六) .doc》由会员分享,可在线阅读,更多相关《2020届高考文科数学一轮(新课标通用)训练检测:单元质量测试(六) .doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、单元质量测试(六) 时间:120分钟满分:150分 第卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A圆柱 B圆锥 C棱锥 D棱柱答案B解析易知仅圆锥的三视图中一定不会出现正方形,故选B2(2018郑州检测)已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()答案C解析由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线PA形成的投影,应为虚线故选C3已知各顶点都在一个球面上的正四棱柱的高为2,这个球的表
2、面积为6,则这个正四棱柱的体积为()A1 B2 C3 D4答案B解析S表4R26,R,设正四棱柱底面边长为x,则x2x222(2R)2,x1V正四棱柱2故选B4(2018贵阳模拟)设m,n为两条不同的直线,为两个不同的平面,给出下列命题:若m,m,则;若m,m,则;若m,n,则mn;若m,n,则mn上述命题中,所有真命题的序号是()A B C D答案A解析对于,垂直于同一条直线的两个平面互相平行,所以正确;对于,平行于同一条直线的两个平面的位置关系不确定,所以错误;对于,平行于同一个平面的两条直线的位置关系不确定,所以错误;对于,垂直于同一个平面的两条直线互相平行,所以正确故选A5(2018太
3、原三模)如图是某几何体的三视图,则这个几何体的体积是()A2 B2C4 D4答案A解析由三视图可知,该几何体由一个半圆柱与三棱柱组成,这个几何体的体积V121()222故选A6(2018江西赣州二模)某几何体的主视图和左视图如图1,它的俯视图的直观图是矩形O1A1B1C1,如图2,其中O1A16,O1C12,则该几何体的侧面积为()A48 B64 C96 D128答案C解析由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD2,OD224,CO6OA,俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4649
4、6故选C7(2018郑州质检三)已知A,B,C,D四点在半径为的球面上,且ACBD4,ADBC,ABCD,则三棱锥DABC的体积是()A6 B4 C2 D答案C解析如图所示,将三棱锥DABC放在长、宽、高分别为a,b,c的长方体中,则依题意有解得则三棱锥DABC的体积为abc4abc2选C8(2018山西四校联考) 如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出下列五个结论:PD平面AMC;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC其中正确的个数是()A1 B2 C3 D4答案C解析矩形ABCD的对角线AC与BD交于点O,所以O为BD的中
5、点在PBD中,M是PB的中点,所以OM是PBD的中位线,OMPD,则PD平面AMC,OM平面PCD,且OM平面PDA因为MPB,所以OM与平面PBA、平面PBC相交故选C9(2018大庆质检一)已知一个圆柱的轴截面是边长为a的正方形在圆柱内有一个球O,该球与圆柱的上、下底面及母线均相切,则圆柱内除了球之外的几何体的体积为()A B C D答案D解析由题意可知,该圆柱底面直径和高都是a,故其体积为V1R2h2a而圆柱体的内切球的直径也为a,故其体积为V2R33,所以圆柱体内除球体以外部分的体积为VV1V2故选D10(2018湖南长沙四校联考)祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理
6、,即祖暅原理:“幂势既同,则积不容异”意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等现有以下四个几何体:图是从圆柱中挖去一个圆锥所得的几何体,图、图、图分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为()A B C D答案D解析设截面与底面的距离为h,则中截面内圆的半径为h,则截面圆环的面积为(R2h2);中截面圆的半径为Rh,则截面圆的面积为(Rh)2;中截面圆的半径为R,则截面圆的面积为R2;中截面圆的半径为,则截面圆的面积为(R2h2)所以中截面的面积相等,故其体积相等,故选D11(2018福建莆田质
7、检)已知正方体ABCDA1B1C1D1,平面过直线BD,平面AB1C,平面AB1Cm,平面过直线A1C1,平面AB1C,平面ADD1A1n,则m,n所成的角的余弦值为()A B C D答案D解析如图,由题中条件知,直线m为B1O,直线n为A1D,B1CA1D,B1O与A1D所成的角为CB1O(或其补角),设正方体的棱长为a,在CB1O中,B1Ca,COa,B1Oa,cosCB1O故选D12(2018太原模拟)三棱锥DABC中,已知CD底面ABC,ABC为正三角形,若AECD,ABCDAE2,则三棱锥DABC与三棱锥EABC的公共部分构成的几何体的体积为()A B C D答案B解析如图所示,设A
8、DCEF,连接DE三棱锥DABC与三棱锥EABC的公共部分为三棱锥FABC由题意AECD,AECD,所以四边形ACDE是平行四边形,取AC的中点M,连接FM,BM,则FM1,BM,由题意可知FM平面ABC所以三棱锥FABC的高是FM又正三角形ABC的面积SABACsin60,所以三棱锥FABC的体积VSFM故选B第卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13如图,一个底面半径为R的圆柱形量杯中装有适量的水若放入一个半径为r的实心铁球,水面高度恰好升高r,则_答案解析由水面高度升高r,得圆柱体积增加R2r,恰好是半径为r的实心铁球的体积,因此有r3R2r故14直
9、三棱柱ABCA1B1C1的六个顶点都在球O的球面上若ABBC2,ABC90,AA12,则球O的表面积为_答案16解析由题设可知,直三棱柱可以补成一个球的内接长方体,所以球的直径为长方体的体对角线长,即4,故球O的表面积S4R21615已知某几何体的三视图如图所示,则其体积为_答案8解析由三视图可知该几何体为一个底面半径为1,高为5的圆柱与一个底面半径为1,高为3的圆柱的组合体,其体积为V12(53)816(2018唐山模拟)已知一个几何体由八个面围成,每个面都是正三角形,有四个顶点在同一平面内且为正方形,若该八面体的棱长为2,所有顶点都在球O上,则球O的表面积为_答案8解析依题意,该八面体的各
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考文科数学一轮新课标通用训练检测:单元质量测试六 2020 高考 文科 数学 一轮 新课 通用 训练 检测 单元 质量 测试
限制150内