秋新人教版八级数学上册第十一章三角形导学案.docx
《秋新人教版八级数学上册第十一章三角形导学案.docx》由会员分享,可在线阅读,更多相关《秋新人教版八级数学上册第十一章三角形导学案.docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结课时 1:三角形的边学习必备欢迎下载可编辑资料 - - - 欢迎下载精品名师归纳总结一:导学部分:可编辑资料 - - - 欢迎下载精品名师归纳总结【学习目标】 1熟悉三角形, .能用符号语言表示三角形,并把三角形分类 2知道三角形三边不等的关系3懂得判定三条线段能否构成一个三角形的方法,.并能用于解决有关的问题【学习重点】知道三角形三边不等关系【学习难点】判定三条线段能否构成一个三角形的方法二:基础部分:图 22、图 3 中有几个三角形?用符号表示这些三角形
2、可编辑资料 - - - 欢迎下载精品名师归纳总结一)、学前预备回忆你所学过或知道的三角形的有关学问。并写出来。二)、探究摸索学问点一:三角形概念及分类1、同学自学课本探究之前内容,并完成以下问题:学问点二:知道三角形三边的不等关系,并判定三条线段能否构成三角形1、探究:请同学们画一个ABC,分别量出AB, BC,AC的长,并比较以下各式的大小:AAB+BC ACAB+ AC BCAC +BC AB从中你可以得出结论: 。练习二:1、以下长度的三条线段能否组成三角形?为什么?BC( 1) 3,4,8。( 2) 5, 6,11。(3) 5, 6,10可编辑资料 - - - 欢迎下载精品名师归纳总结
3、(1)三角形概念: 由不在同始终线上的三条线段 所组成的图形叫做三角形。2、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个可编辑资料 - - - 欢迎下载精品名师归纳总结如图,线段 、 、 是三角形的边。 点 A、B、C是三角形的 ; 、 、数是 个。可编辑资料 - - - 欢迎下载精品名师归纳总结 是相邻两边组成的角,叫做三角形的内角, 简称三角形的角。 图中三角形记作 。(2)三角形按角分类可分为 、 、 。(3)三角形按边分类可分为 三角形 (4)如图 1,等腰三角形ABC中, AB=AC,腰是 ,AD底是 , 顶角指 ,底角指 .等边三
4、角形DEF是特别的 三角形, DE= = .练习一:BCEF1、如图 2以下图形中是三角形的有 ?图 1(3)假如三角形的两边长分别是3 和 5,那么第三边长可能是()A、1B、9C、3D、103、一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。三:拓展部分1、 一个等腰三角形的两边长分别是2 和 5,就它的周长是()A、7B、9C、12D、9 或 122、如三角形的周长是60cm,且三条边的比为3:4:5,就三边长分别为 .3、如 ABC 的三边长都是整数,周长为11,且有一边长为4,就这个三角形可能的最大边长是可编辑资料 - - - 欢迎下载精品名师归纳总结可编
5、辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 13 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结 .四:提高部分:已知线段 3cm,5cm,xcm,x 为偶数,以3, 5,x 为边能组成 个三角形。课时 2 三角形的高,中线,角平分线一:导学部分:【学习目标】 1. 熟悉并会画出三角形的高线,利用其解决相关问题。2. 熟悉并会画出三角形的中线,利用其解决相关
6、问题。3. 熟悉并会画出三角形的角平分线,利用其解决相关问题。学习必备欢迎下载练习一:如下列图,画ABC的一边上的高,以下画法正确选项()学问点二: 熟悉并会画三角形的中线,利用其解决相关问题1、 作出以下三角形三边上的中线可编辑资料 - - - 欢迎下载精品名师归纳总结【学习重点】熟悉三角形的高线、中线与角平分线,并会画出图形A【学习难点】画出三角形的高线、中线与角平分线A二:基础部分一)、学前预备BCBC1、三角形按边分可分为什么?按角分可分为什么?可编辑资料 - - - 欢迎下载精品名师归纳总结2、以下长度的三个线段能否组成三角形?(1) 3,6,8( 2)1,2, 3(3) 6, 8,
7、2二)、探究摸索学问点一: 熟悉并会画三角形的高线,利用其解决相关问题1、作出以下三角形三边上的高:12、AD是 ABC的边 BC上的中线,就有BD =,23、由作图可得出如下结论:(1)三角形的三条中线相交于点。( 2)锐角三角形的三条中线相交于三角形的。( 3)钝角三角形的三条中线相交于三角形的。( 4)直角三角形的 三条中线相交于三角形的。( 5)交点我们叫做三角形的重心。练习二:如图, D、E 是边 AC 的三等分点,图中有个三角形, BD可编辑资料 - - - 欢迎下载精品名师归纳总结AA是三角形中边上的中线,BE 是三角形中 上的中线。可编辑资料 - - - 欢迎下载精品名师归纳总
8、结BCB学问点三:熟悉并会画三角形的角平分线,利用其解决相关问题自学课本 66 页三角形的角平分线并完成以下各题:C1、作出以下三角形三角的角平分线:可编辑资料 - - - 欢迎下载精品名师归纳总结2、上面第 1 图中, AD是 ABC的边 BC上的高,就 ADC=3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于点。( 2)锐角三角形AA的三条高相交于三角形的。( 3)钝角三角形的三条高所在直线相交于三角形的。(4)直角三角形的三条高相交三角形的。( 5)交点我们叫做三角形的垂心。可编辑资料 - - - 欢迎下载精品名师归纳总结精选名师 优秀B名师C- - - - - - -
9、- - -BC第 2 页,共 13 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习必备欢迎下载【学习重点】三角形的稳固性可编辑资料 - - - 欢迎下载精品名师归纳总结2、AD是 ABC中 BAC的角平分线,就 BAD=3、由作图可得出如下结论:(1)三角形的三条角平分线相交于点( 2)交点我们叫做三角形的内心。【学习难点】三角形的稳固性的懂得二:基础部分:一)、学前预备找找生活中的引用三角形和四边形的例子,写出来。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料
10、 - - - 欢迎下载精品名师归纳总结练习三:如图,已知1=1 BAC, 2 = 3 ,就 BAC 的平分线2二)、探究摸索学问点一:三角形的稳固性可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结为, ABC的平分线为.总结:三角形的高、中线、角平分线都是一条线段。三、拓展部分1三角形的角平分线是()A 直线B射线C线段D以上都不对2以下说法:三角形的角平分线、中线、高线都是线段。.直角三角形只有一条高线。三角形的中线可能在三角形的外部。三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有()A1 个B 2 个C3 个D 4 个3. 如
11、图, AD 是 ABC的高, AE 是 ABC的角平分线, AF 是 ABC的中线,写出图中全部相等的角和相等的线段。A四:提高部分二、做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的外形会转变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的外形会转变吗?课时 4:与三角形有关的线段练习达标检测:1. 如图 1,图中全部三角形的个数为,在 ABE中,AE所对的角是, ABC所对的边是, 在 ADE中, AD是的对边,在 ADC中, AD是的对边。可编辑资料 - - - 欢迎下载精品名师归纳总结1在 ABC中, AB=AC,AC边上的中线BD把三角形的周长B分为 12c
12、m 和 15cm两部分,求三角形各边的长F EDC A2. 如图 2,已知 1= 12 BAC,2 = 3,就 BAC的平分线为,ABC的平分线为。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结课时 3:三角形的稳固性一:导学部分:3. 如图 3, D、E 是边 AC的三等分点,图中有个三角形, BD是三角形中边上的中线, BE是三角形中边上的中线。BC可编辑资料 - - - 欢迎下载精品名师归纳总结【学习目标】 1熟悉三角形的稳固性,并会用其解决一些实际问题。2、通过练习进一步巩固三角形的边和相关线段。可编辑资料 - - - 欢迎下载精品名师
13、归纳总结学习资料 名师精选 - - - - - - - - - -第 3 页,共 13 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习必备欢迎下载12. 已知: ABC的周长为 48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:ABC的各边的长。可编辑资料 - - - 欢迎下载精品名师归纳总结图 1图 2图 34. 如等腰三角形的两边长分别为7 和 8,就其周长为。如两边长分别为4 和 8,就其周长为 .5. 如右图,木工师傅做完门框后,为了防止变形
14、,常常像图中所示那样钉上两条斜拉的木条(图中的AB、CD),这样做的数学道理是。13. 已知等腰三角形的一边等于8cm,另一边等于6cm,求此三角形的周长。 已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长。14. 在 ABC中 AB=AC,AC上的中线 BD把三角形的周长分为24cm和 30cm 的两个部分, 求三角形的三边长。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结6. 一个三角形的三边之比为23 4,周长为 36cm,就此三角形三边的长分别为 .7. 已知 ABC中,AD为 BC边上的中线, AB=10cm,AC=
15、6cm,就 ABD与 ACD的周长之差为 . 7如右图,图中共有三角形()A、4 个B、5 个C、6 个D、8 个8. 以下长度的三条线段中,能组成三角形的是()A 、 3cm,5cm ,8cmB、8cm, 8cm,18cmC、0.1cm ,0.1cm ,0.1cmD、3cm,40cm, 8cm9. 假如线段 a,b,c 能组成三角形,那么,它们的长度比可能是()A、124B、134C、34 7D、23 410. 假如三角形的两边分别为7 和 2,且它的周长为偶数,那么第三边的长为()A、5B、6C、7D、815. 【探究】如图,在ABC中,如 AD是 BC边上的中线,就有BD =1边上的高
16、AE,利用三角形的面积公式可求得S ABD=SABC,2请你任意画一个三角形,将这个三角形的面积四等分。1,如过 A 点作 BC2AB D EC可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结11. 如图,分别画出三角形过顶点A 的中线、角平分线和高。AAABCBCB课时 5:三角形的内角一:导学部分:【学习目标】 1. 经受试验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这肯定理2. 能应用三角形内角和定懂得决一些简洁的实际问题C 【学习重点】三角形内角和定理可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢
17、迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 13 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结【学习难点】三角形内角和定理的推理的过程二:基础部分:一)、学前预备每个同学预备好二个由硬纸片剪出的三角形二)、探究摸索学问点一:探究三角形的内角和定理1、自学课本内容,利用手中的硬纸片运用拼合法探究三角形的内角和。(1)在所预备的三角形硬纸片上标出三个内角的编码(2)叫几名同学到黑板
18、运用不同的方法粘贴演示。(3)由拼合过程你能想出证明三角形内角和等于180的方法吗?2、证明三角形的内角和定理(1)阅读课本证明过程。(2)仿照课本证明过程挑选下面的任意一个图形中帮助线的做法,完成证明。学习必备欢迎下载1、填空:(1)在 ABC中, A = 60 B = 30 ,就 C =。(2)在 ABC中, A = B = 4 C,就 C =。(3)在 ABC中, A = 40 , B = C,就 B =。 2、例:如图, C 岛在 A 岛的北偏东 50方向, B 岛在 A 岛的北偏东 80方向, C 岛在 B 岛的北偏西 40 方向,从 C 岛看 A、B 两岛的视角ACB 是多少度?可
19、编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结AEBCDA三、拓展部分E1、判定:(1) 三角形中最大的角是70 ,那么这个三角形是锐角三角形()B(2) 一个三角形中最多只有一个钝角或直角()C(3)一个等腰三角形肯定是锐角三角形()可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结图一图二(4) 一个三角形最少有一个角不大于60 () 四、提高部分1. 三角形的三个内角之比为13 5,那么这个三角形的最大内角为。2. ABC中, A: B: C=1:2: 2,就 A= , B= , C= 可编辑资
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋新人教版八级数学上册第十一章三角形导学案 新人 教版八 级数 上册 第十一 三角形 导学案
限制150内